Geometric Constructions and Proofs via Motions

P 1 (e) Given a triangle *ABC*. Construct a square *PQRS* such that \overline{PQ} lies on the side \overline{AB} , *R* lies on \overline{BC} , and *S* lies on \overline{CA} .

P 2 (e) Given a square *ABCD*. Construct a circle k through D touching the sides *AB* and *BC*.

P 3 (e) Given two lines g and h and a circle k. Find a square ABCD with $A, C \in h, D \in g$ and $B \in k$.

P 4 (e) Given three parallel lines g, h, and k. Find an equilateral triangle ABC with $A \in g, B \in h$, and $C \in k$.

P 5 (e) Given two circles k_1 and k_2 intersecting in S and T. Find two different points $P \in k_1$ and $Q \in k_2$ both different from S and T such that P, Q, and S are collinear and $|\overline{PS}| = |\overline{QS}|$.

P 6 (m) Given three concentric circles k_1 , k_2 , and k_3 with radii 3, 4, and 5, respectively. Draw a right triangle ABC with $\alpha = 60^{\circ}$, $\beta = 30^{\circ}$ and $\gamma = 90^{\circ}$ such that A, B, and C lie on k_1 , k_3 , and k_2 , respectively.

P 7 (m) (a) Given a point *P*. Construct a square *ABCD* such that the distances of *P* from *A*, *B*, and *C* are 1, 2, and 3, respectively. (b) Given a square *ABCD*. Construct a point *P* such that $|\overline{PA}| : |\overline{PB}| : |\overline{PC}| = 1: 2: 3$.

P 8 (e) Given three adjacent congruent squares. Let α be the smallest angle in the right triangle with legs 1 and 2. Let β be the smallest angle in the right triangle with legs 1 and 3. Prove that $\alpha + \beta = 45^{\circ}$.

P 9 (e) Given a square *ABCD*. Suppose that *P* divides side \overline{AC} as 4:1 and *Q* divides \overline{AB} as 3:2. Prove that *PQD* is a right isosceles triangle.

P 10 (e) Let ABC be an acute angle triangle. Over \overline{BC} and \overline{AC} draw the squares BPQC and CRSA to the outside, respectively. Let M be the midpoint of \overline{AB} .

a) Prove that MC and QR are perpendicular.

P 11 (e) Given a right triangle *ABC* with right angle at *C*. Let squares *ABHF*, *BCLE*, and *ACKD* be drawn to the outside. Moreover, let $\triangle HFG$ be congruent to $\triangle ABC$ with the same orientation. Prove that \overline{CG} and \overline{ED} have equal length and are orthogonal.

P 12 (m) Let the points A, B, D, and C be on a line in that order. Draw isosceles right triangles APB and BQC over the hypotenuses \overline{AB} and \overline{BC} downwards, respectively, as well as isosceles right triangles ASD and DRC over the hypotenuses \overline{AD} and \overline{DC} upwards, respectively. Prove that the segments \overline{SQ} and \overline{PR} are perpendicular and of equal length.

P 13 (e) Over the sides \overline{AB} and \overline{DA} of a parallelogram ABCD we draw to the outside of ABCD equilateral triangles $\triangle ABQ$ and $\triangle ADP$, respectively. Prove that $\triangle PQC$ is equilateral.

P 14 (e) Suppose that $\triangle ABC$ is equilateral. Prove that for all points X on the arc AB of the circumcircle of $\triangle ABC$ we have $|\overline{AX}| + |\overline{BX}| = |\overline{CX}|$.

P 15 (m, BWM 1998.1.3) Over the sides \overline{BC} and \overline{CA} of an acute angle triangle ABC there are drawn to the outside right isosceles triangles BXC and CYA with right angles at X and Y, respectively. Let M be the midpoint of \overline{AB} . Prove that XMY is a right isosceles triangle.

P 16 (e, MO 471313) The circles k_1 and k_2 with centers M_1 and M_2 , respectively, intersect in different points A and B. The line AM_1 intersects k_1 in A and C. The line AM_2 intersects k_2 in A and in D. Prove that M_1M_2 and CD are parallel lines and B lies on CD.

b) Prove that $|\overline{QR}| = 2 |\overline{MC}|$.

P 17 (m, Baltic Way 1992) Given a circle k and two circles k_1 and k_2 touching k from the inside at A and B, respectively. Let t be one common tangent line to k_1 and k_2 such that k_1 and k_2 are on the same side of t and let C and D the touching points, respectively. Prove that the lines AC and BD intersect in a point F on k.

P 18 (h, BWM 1996.2.3) Let *ABC* a triangle. Draw to the outside three rectangles ABB_1A_1 , BCC_1B_2 , and CAA_2C_2 . Prove that the perpendicular bisectors of $\overline{A_1A_2}$, $\overline{B_1B_2}$, and $\overline{C_1C_2}$ meet in one point.

P 19 (h, MO 421142) In the inside of triangle *ABC* there are four congruent circles k_1 , k_2 , k_3 , and k_4 with centers A', B', C', and M', respectively. The circles k_1 , k_2 , and k_3 are touching two sides of the triangle each as well as circle k_4 from outside. Prove that M' lies on the line through the centers of circumcircle and incircle of $\triangle ABC$.

P 20 (m) Suppose that three congruent circles k_1 , k_2 , and k_3 meet in one common point M. Besides in M, the circles intersect in A, B, and C. Prove that the circumcircle k_4 of $\triangle ABC$ is congruent to the given three circles.

P 21 (m) Given three incongruent and non-intersecting circles k_1 , k_2 , and k_3 . To the pair of circles k_2 and k_3 draw the two outer common tangent lines which intersect in Z_1 . The intersection points Z_2 and Z_3 are constructed in the same way. Prove that Z_1 , Z_2 , and Z_3 are collinear.

P 22 (h, IMO 1979.3) Two circles k_1 and k_2 with centers M_1 and M_2 intersect in P. Starting simultaneously from P two points R_1 and R_2 move with constant speed, each travelling along its own circle in the same sense. The two points return to P simultaneously after one revolution. Prove that there is a fixed point F in the plane such that the two points R_1 and R_2 are always equidistant from F.

P 23 (m) Let *P* be an inner point of the parallelogram *ABCD* such that $\angle APB + \angle CPD = 180^{\circ}$. Prove that $\angle PAB = \angle PCB$.

P 24 (e) Let *ABCD* be a tetrahedron with midpoints *E*, *F*, *G*, and *H* of the sides \overline{BD} , \overline{CD} , \overline{CA} , and \overline{AB} . Prove that *EFGH* is a parallelogram.

P 25 (e, MO 440923) Let *ABCDE* be a pyramid with a square basis *ABCD*. The faces $\triangle ABE$, $\triangle BCE$, $\triangle CDE$, and $\triangle DAE$ are all equilateral. Over the face $\triangle CDE$ there is drawn to the outside a regular tetrahedron *CDEF*. How many faces has the polyeder *ABCDEF*?

P 26 (e, Bay Area Mathematical Olympiad 1999) Let ABCD be a trapezoid. Over the parallel sides \overline{AB} and \overline{CD} are drawn squares with midpoints P_1 and P_2 , respectively. Let P be the intersection of the diagonals \overline{AC} and \overline{BD} . Prove that P, P_1 , and P_2 are collinear.

P 27 (m, BWM 2005.2) Let k_1 and k_2 be circles intersecting in A and B. A first line through B intersects k_1 in C and k_2 in E. A second line through B intersects k_1 in D and k_2 in F. We assume that B lies between C and E and between D and F. Let M and N be the midpoints of \overline{CE} and \overline{DF} , respectively. Prove that the triangles ACD, AEF, and AMN are similar to each other.

P 28 (m) Over the sides \overline{BC} and \overline{CA} of an acute triangle ABC there are drawn similar to each other right triangles BXC and AYC with right angles at X and Y. We assume that $\triangle BXC$ and $\triangle AYC$ have opposite orientation. Let M be the midpoint of \overline{AB} . Prove that $\triangle XMY$ is isosceles.

P 29 (m, Napoleon) Over the sides of a triangle *ABC* are drawn to the outside equilateral triangles. Prove that the midpoints of these triangles form an equilateral triangle.

P 30 (h) Over the sides of an acute triangle *ABC* there are drawn to the outside triangles *BCX*, *CAY*, and *ABZ*, respectively such that $\angle ZAB = \angle ZBA = 15^{\circ}$, $\angle YAC = \angle XBC = 45^{\circ}$, and $\angle YCA = \angle XCB = 30^{\circ}$. Prove that *XYZ* is a right isosceles triangle.

P 31 (h) Suppose that the vertices of a regular *n*-gon are on the $\mathbb{Z} \times \mathbb{Z}$ lattice, that is, all coordinates are integers. Prove that n = 4.

Axel Schüler, Institute for Applied Training Science, Marschnerstraße 29, 04109 Leipzig email: Axel.Schueler@math.uni-leipzig.de