
THE CARD GAME SET

BENJAMIN LENT DAVIS AND DIANE MACLAGAN

set1 is an extremely addictive, fast-paced card game found in toy
stores nationwide. Although children often beat adults, the game has
a rich mathematical structure linking it to the combinatorics of finite
affine and projective spaces and the theory of error-correcting codes.
Last year an unexpected connection to Fourier analysis was used to
settle a basic question directly related to the game of set, and many
related questions remain open.

The game of set was invented by population geneticist Marsha Jean
Falco in 1974. She was studying epilepsy in German Shepherds and
began representing genetic data on the dogs by drawing symbols on
cards and then searching for patterns in the data. After realizing the
potential as a challenging puzzle, with encouragement from friends and
family she developed and marketed the card game. Since then, set has
become a huge hit both inside and outside the mathematical commu-
nity.

set is played with a special deck of cards. Each set card displays
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Figure 1. Typical set cards.

a design with four attributes — number, shading, color, and shape —
and each attribute assumes one of three possible values, given in the
table below.

Number: { One, Two, Three }
Shading: { Solid, Striped, Open }
Color: { Red, Green, Purple }
Shape: { Ovals, Squiggles, Diamonds }

A set deck has eighty-one cards, one for each possible combination of
attributes.

1set is a trademark of SET Enterprises, Inc. The set cards are depicted here
with permission. set game play is protected intellectual property.

1



2 BENJAMIN LENT DAVIS AND DIANE MACLAGAN

The goal of the game is to find collections of cards satisfying the
following rule.

The set rule: Three cards are called a set if, with
respect to each of the four attributes, the cards are either
all the same or all different.

For example,

is a set, because all cards have the same shape (ovals), the same color
(green), and the same shading (solid), and each card has a different
number of ovals. On the other hand,

fails to be a set, because there are two oval cards and one squiggle
card. Thus the cards are neither all the same nor all different with
respect to the shape attribute.

To play the game, the set deck is shuffled and twelve cards are dealt
to a table face-up. All players simultaneously search for sets. The
first player to locate a set removes it, and three new cards are dealt.
The player with the most sets after all the cards have been dealt is
the winner.
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Figure 2. Can you find all five sets? (Or all eight for
those readers with black-and-white photocopies.)

Occasionally, there will not be any sets among the twelve cards
initially dealt. To remedy this, three extra cards are dealt. This is
repeated until a set makes an appearance. This prompts the following
set-theoretic question.

Question. How many cards must be dealt to guarantee the presence
of a set?
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Figure 3 shows a collection of twenty cards containing no sets. A
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Figure 3. Twenty cards without a set.

brute-force computer search shows that this is as large as possible, as
any collection of twenty-one cards must contain a set.

There is a wonderful geometric reformulation of this Question as
follows. Let F3 be the field with three elements, and consider the vector
space F4

3. A point of F4
3 is a 4-tuple of the form (x1, x2, x3, x4), where

each coordinate assumes one of three possible values. Using the table
of set attributes, set cards correspond to points of F4

3, and vice-versa.
For example,

(2, 1, 3, 2) ↔ Two Solid Purple Squiggles ↔ .

Under this correspondence, three cards form a set if and only if the
three associated points of F4

3 are collinear. To see this, notice that if
α, β, γ are three elements of F3, then α + β + γ = 0 if and only if
α = β = γ or {α, β, γ} = {0, 1, 2}. This means that the vectors a,
b, and c are either all the same or all different with respect to each
coordinate exactly when a + b + c = 0. Now a + b + c = 0 in F4

3 means
that a − b = b − c, so the three points are collinear. Note that this
argument works when F4

3 is replaced by Fd
3 for any d. From this point

of view, players of set are searching for lines contained in a subset of
F4

3. We summarize this rule as follows.

The Affine Collinearity Rule: Three points a, b, c ∈
Fd

3 represent collinear points if and only if a + b + c = 0.

We define a d-cap to be a subset of Fd
3 not containing any lines, and

ask the following.



4 BENJAMIN LENT DAVIS AND DIANE MACLAGAN

Equivalent Question. What is the maximum possible size of a cap
in F4

3?

In this form the question was first answered, without using com-
puters, by Giuseppe Pellegrino [19] in 1971. Note that this was three
years before the game of set was invented! He actually answered a
more general question about “projective set,” which we explain in the
last section.

Although set cards are described by four attributes, from a mathe-
matical perspective there is nothing sacred about the number four. We
can play a three-attribute version of set, for example by playing with
only the red cards. Or we can play a five-attribute version of set by
using scratch-and-sniff set cards with three different odors. In gen-
eral, we define an affine set game of dimension d to be a card game
with one card for each point of Fd

3, where three cards form a set if the
corresponding points are collinear.

A cap of the maximum possible size is called a maximal cap. It is
natural to ask for the size of a maximal cap in Fd

3, as a function of the
dimension d. We denote this number by ad, and the known values are
given in the table below.

d 1 2 3 4 5 6 7
ad 2 4 9 20 45 112 ≤ a6 ≤ 114 ?

The values of ad in dimensions four and below can be found by exhaus-
tive computer search. The search space becomes unmanageably large
starting in dimension five. Yves Edel, Sandy Ferret, Ivan Landjev, and
Leo Storme recently created quite a stir by announcing the solution in
dimension five [6]. We shall spend some time working our way up to
their solution.

There are many other possible generalizations of the game of set.
For example, we could add another color, shape, form of shading, and
number to the cards, to make the cards correspond to points of F4

4.
Here, however, several choices need to be made about the set rule.
Is a set a collection of cards where every attribute is all the same or
all different, or is it a collection of collinear points? In F4

4, there are
four points on a line, so do we require three or four collinear points to
form a set? Furthermore, if we choose the collinearity criterion, then
collinearity of set cards is sensitive to the choice of which color, shape,
etc. corresponds to which element of F4

4. Because of these complica-
tions we will restrict our attention here to caps (line-free collections)
in Fd

3.
We can exhibit caps graphically using the following scheme. Let us

consider the case of dimension d = 2. A two-attribute version of set
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may be realized by playing with only the red ovals. The vector space
F2

3 can be graphically represented as a tic-tac-toe board as in Figure 4.
We indicate a subset S of F2

3 by drawing an “X” in each square of the
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Figure 4. The correspondence between 2-attribute
set and F2

3.

tic-tac-toe board corresponding to a point of S. The lines contained
in S are almost plain to see: most of them appear as winning tic-tac-
toes, while a few meet an edge of the board and “loop around” to the
opposite edge. Check that the two lines in Figure 5 correspond to sets
in Figure 4.

Figure 5. This collection of points contains two lines
which are indicated by dashed curves.

Figure 6 contains pictures of some low-dimensional maximal caps.
In dimensions one through four, the caps are visibly symmetrical, and
each cap contains embedded copies of the maximal caps in lower di-
mensions. No such pattern is visible in the diagram of the 5-cap. It
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4−cap

3−cap

2−cap

1−cap

5−cap

Figure 6. Low-dimensional maximal caps.
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is natural to ask if the maximal caps in Figure 6 are the only ones
in each dimension. In a trivial sense, the answer is ‘no’, since we can
make a new cap by permuting the colors of an old cap. There are many
other permutations of Fd

3 guaranteed to produced new caps from old.
Permutations of Fd

3 taking caps to caps are exactly those taking lines
to lines, and such a permutation is called an affine transformation.
Another characterization of affine transformations is that they are the
permutations of Fd

3 of the form

σ(v) = Av + b,

where A is an invertible d×d-matrix with entries in F3, b is an arbitrary
vector of Fd

3, and v is a vector in Fd
3. We say that two caps are of the

same type if there is an affine transformation taking one to the other.
For example, consider the affine transformation σ(x, y) = (−x−y,−x+
y − 1) taking a vector (x, y) ∈ F2

3 to another vector in F2
3. Applying

this to a 2-cap gives another 2-cap of the same type. This is illustrated
in Figure 7, where we have declared the center square of the tic-tac-toe
board to be the origin of F2

3.

PSfrag replacements

σ

Figure 7: Two 2-caps of the same type.

It is known that in dimensions five and below there is exactly one
type of maximal cap. An affine transformation taking a cap to itself is
called a symmetry of the cap. Although it is not obvious from Figure 6,
the maximal 5-cap does have some symmetries. In fact, its symmetry
group is transitive, meaning that, given two points of the 5-cap, there
is always a symmetry taking one to the other. Michael Kleber reports
that the stabilizer of a point in the 5-cap is the semidihedral group of
order 16.

The symmetry group is useful for reducing the number of cases that
need to be checked in exhaustive computer searches for maximal caps,
thus greatly speeding up run times. To see this idea in action, check
out Donald Knuth’s set-theoretic computer programs [17].

Combinatorics

We can make some progress on computing the size of maximal caps
using only counting arguments.

Proposition 1. A maximal 2-cap has four points.
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Proof. We have exhibited a 2-cap with four points. The proof proceeds
by contradiction. Suppose that there exists a 2-cap with five points,
x1, x2, x3, x4, x5. The plane F2

3 can be decomposed as the union of three
horizontal parallel lines as in Figure 8.

PSfrag replacements

1 2

3 4

5
H

Figure 8: F2
3 decomposed as the union of three parallel lines

Each line contains at most two points of the cap. Thus, there are
two horizontal lines that contain two points of the cap, and one line, H,
that contains exactly one point of the cap. Without loss of generality,
let x5 be this point. There are exactly four lines in the plane containing
the point x5, which we denote H, L1, L2, L3.

PSfrag replacements

1 2

3 4

5

L1

L2

L3

H

Figure 9: The four lines containing x5

Since the line H contains none of the points x1, . . . , x4, by the pigeon-
hole principle two of these points xr and xs must lie on one line Li.
This shows that the line Li contains the points xr, xs and x5, which
contradicts the hypothesis that the five points are a cap. �

We can apply the method of Proposition 1 to compute the size of a
maximal cap in three dimensions.

Proposition 2. A maximal 3-cap has nine points.

Proof. We have exhibited a 3-cap with nine points. The proof proceeds
by contradiction. Suppose that there exists a 3-cap with ten points.
The space F3

3 can be decomposed as the union of three parallel planes.
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Since the intersection of any plane with the 3-cap is a 2-cap, Proposi-
tion 1 implies that no plane can contain more than four points of the
cap. This means that the plane containing the fewest number of points
must contain either two or three points, for if it contained four points
we would need twelve points total, and one or zero points would mean
at most nine points total. Call this plane H, and note that there are
at least seven points of the cap, x1, . . . , x7, not contained in H.

Let a and b be two points of the cap on the plane H. There are
exactly four planes in the space F3

3 containing both a and b, which we
denote H, M1, M2, M3. Since H does not contain the points x1, . . . , x7,
by the pigeon-hole principle one of the planes Mi must contain three of
these points xr, xs, xt. This shows that the plane Mi contains a total
of five points of the cap, which contradicts Proposition 1. �

Unfortunately, this method is not strong enough to prove that a4 =
20. To do this, we employ another time-honored combinatorial tech-
nique, namely, counting the same thing in two different ways. By way
of introduction, we will give another proof that a3 = 9.

Proposition 3. A maximal 3-cap has nine points.

Proof. The proof is again by contradiction. Suppose that there exists a
3-cap C with ten points. The space F3

3 can be decomposed as the union
of three parallel planes, H1, H2, H3 in many different ways. Given such
a decomposition, we obtain a triple of numbers,

{|C ∩H1|, |C ∩H2|, |C ∩H3|},
called the (unordered) hyperplane triple, where |C ∩ Hi| is the size of
C ∩ Hi. Since a 2-cap has at most a2 = 4 points, the only possible
values for a hyperplane triple are {4, 4, 2} or {4, 3, 3}. Let

a = the number of {4, 4, 2} hyperplane triples,
b = the number of {4, 3, 3} hyperplane triples.

How many different ways are there to decompose F3
3 as the union of

three hyperplanes? On the one hand, there are a+b ways. On the other
hand, there is a unique line through the origin of F3

3 perpendicular to
each family of three parallel hyperplanes, and we can count these lines
as follows. Any nonzero point determines a line through the origin,
and there are 33 − 1 = 26 nonzero points. Since each line contains
two nonzero points, there must be 26/2 = 13 lines through the origin.
Thus,

a + b = 13.

To obtain another equation in a and b, we will count 2-marked planes,
which are pairs of the form (H, {x, y} ⊂ H ∩ C), where H is a plane.
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It can be checked that there are exactly four planes containing any
pair of distinct points. This is a special case of Proposition 4 which
follows. Thus, there are 4

(

10

2

)

= 180 2-marked planes. On the other

hand, for each {4, 4, 2} hyperplane triple we count
(

4

2

)

+
(

4

2

)

+
(

2

2

)

=
13 2-marked planes, and for each {4, 3, 3} hyperplane triple we count
(

4

2

)

+
(

3

2

)

+
(

3

2

)

= 12 2-marked planes. Hence,

13a + 12b = 180.

The only solution to these equations is a = 24, b = −11. This is a
contradiction since a and b can only take nonnegative values. �

In the proof above we needed to count the number of hyperplanes
containing a fixed pair of points, or in other words, containing a fixed
line. To apply this method to maximal 4-caps, we will need to solve a
generalization of this problem. Define a k-flat to be a k-dimensional
affine subspace of a vector space.

Proposition 4. The number of hyperplanes containing a fixed k-flat
in Fd

3 is given by

3d−k − 1

2
.

Proof. Let K be an k-flat containing the origin. Then the natural map

Fd
3 → Fd

3/K
∼= Fd−k

3

gives a bijection between hyperplanes of Fd
3 containing K and hyper-

planes of Fd−k
3 containing the origin.

Each hyperplane containing the origin is determined by a nonzero
normal vector, and there are exactly two nonzero normal vectors de-
termining each hyperplane. Thus, there are half as many hyperplanes
as there are nonzero vectors. Since there are 3d−k − 1 nonzero vectors,
there must be (3d−k − 1)/2 hyperplanes containing the origin. �

This lets us apply the ideas of Proposition 3 to calculate a4.

Proposition 5. A maximal 4-cap has twenty points.

Proof. We have exhibited a 4-cap with 20 points. The proof proceeds
by contradiction. Suppose that there exists a 4-cap C with 21 points.
Let xijk be the number of {i, j, k} hyperplane triples of C. Since a
3-cap has at most a3 = 9 points, there are only 7 possible hyperplane
triples:

{i, j, k} = {9, 9, 3}, {9, 8, 4}, {9, 7, 5}, {9, 6, 6}, {8, 8, 5}, {8, 7, 6}, {7, 7, 7}.
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The number of ways to decompose F4
3 as a union of three parallel hyper-

planes is equal to the number of lines through the origin in F4
3, which

is (34 − 1)/2 = 40. Thus,

(1) x993 + x984 + x975 + x966 + x885 + x876 + x777 = 40.

To obtain another equation in xijk, let us count 2-marked hyperplanes,
which are pairs of the form (H, {x, y} ⊂ H ∩ C), where H is a hy-
perplane. Using Proposition 4 above, we find that the number of hy-
perplanes containing a distinct pair of points is 13. Thus, there are
13

(

21

2

)

= 2730 2-marked hyperplanes. As in the proof of Proposition 3,
there are

[(

9

2

)

+

(

9

2

)

+

(

3

2

)]

x993 + · · ·+
[(

7

2

)

+

(

7

2

)

+

(

7

2

)]

x777

2-marked hyperplanes. Explicitly computing each coefficient above
yields the formula

(2) 75x993 +70x984 +67x975 +66x966 +66x885 +64x876 +63x777 = 2730.

To obtain yet another equation in xijk, let us count 3-marked hy-
perplanes, which are pairs of the form (H, {x, y, z} ⊂ H ∩ C), where
H is a hyperplane. Notice that, since {x, y, z} ⊂ C, the points x,
y, and z cannot be collinear. There are 4 hyperplanes containing 3
distinct non-collinear points, thus, there are 4

(

21

3

)

= 5320 3-marked
hyperplanes. Imitating our count of 2-marked hyperplanes above, we
find that
(3)
169x993+144x984+129x975+124x966+122x885+111x876+105x777 = 5320.

We now have three equations in seven variables, and so in princi-
ple there could be infinitely many solutions. Fortunately we are only
interested in the nonnegative integer solutions. Adding 693 times equa-
tion (1) to three times equation (3), and then subtracting off 6 times
equation (2), gives

5x984 + 8x975 + 9x966 + 3x885 + 2x876 = 0.

The only nonnegative solution to this equation is x984 = x975 = x966 =
x885 = x876 = 0. But equation (2) minus 63 times equation (1) is

12x993 + 7x984 + 4x975 + 3x966 + 3x885 + x876 = 210.

This reduces to 12x993 = 210, which contradicts x993 being an integer.
�
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This proof was improved from a previous version by conversations
with Yves Edel. The method of counting marked hyperplanes via hy-
perplane triples gives the shortest known proof of a4 = 20 that does
not use an exhaustive computer search. Unfortunately, a straightfor-
ward application of this method fails to show that a5 = 45. Part of
the problem is that the new equations counting 4-marked hyperplanes
require an additional variable to distinguish between the cases when
four points are affinely dependent or independent. In the next section
we describe another approach which computes a5.

The Fourier Transform

The Fourier transform is an immensely useful tool for analyzing prob-
lems with associated symmetry groups. It is a natural construction in
representation theory, and we refer the reader to the book of Fulton
and Harris [7] for more about this fascinating subject. In this section
we describe a Fourier transform method originated by Roy Meshulam
[18] which was later used by Jürgen Bierbrauer and Yves Edel [1]. The
following bound appears in these papers:

Proposition 6. Let C ⊂ Fd
3 be a d-cap such that any hyperplane in-

tersects C in at most h points. Then

p ≤ 1 + 3h

1 + h
3d−1

,

where p is the size of C.

In particular, any hyperplane intersects a d-cap in a (d − 1)-cap.
Starting with the fact that a1 = 2, we can inductively apply Proposi-
tion 6 to obtain

a2 ≤ 4, a3 ≤ 9, a4 ≤ 21.

The bound a6 ≤ 114 comes from applying Proposition 6 using h =
a5 = 45 and d = 6. Thus, for low-dimensional caps, Proposition 6 gives
nearly sharp bounds. In contrast to other methods, Proposition 6 does
not become more difficult to apply as the dimension grows larger.

Given a function f : Fd
3 → C, define the Fourier transform of f to

be a new function f̂ : Fd
3 → C defined by the formula

(4) f̂(z) =
∑

x∈F
d

3

f(x)ξz·x,
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where ξ = e
2πi

3 . Given a set S ⊂ Fd
3, the characteristic function of S is

defined by the formula

χ(x) =

{

1 if x ∈ S,
0 if x /∈ S.

Knowing the characteristic function of S is exactly the same as knowing
the set S. The Fourier transform of the characteristic function,

τ(z) = χ̂(z) =
∑

x∈F
d

3

χ(x)ξz·x =
∑

c∈S

ξz·c,

has a natural geometric interpretation as follows. Notice first that τ(0)
is simply the size of the set S. Next, let z be a nonzero vector, and
consider the three parallel hyperplanes H0, H1, H2 normal to z, where

Hj = {x ∈ Fd
3|z · x = j}.

To each nonzero vector z we associate an (ordered) hyperplane triple

(h0, h1, h2) = (|S ∩H0|, |S ∩H1|, |S ∩H2|).
Proposition 7. The complex number τ(z) encodes the same data as
the ordered hyperplane triple (h0, h1, h2) associated to z. In particular,

τ(z) = h0ξ
0 + h1ξ

1 + h2ξ
2

and

h0 =
2

3
u +

1

3
p,

h1 =
1

3
(p− u) +

1√
3
v,

h2 =
1

3
(p− u)− 1√

3
v,

where τ(z) = u + iv and p = τ(0) is the size of S.

We call τ the (ordered) hyperplane triple function of S. In the pre-
vious section our interest in hyperplane triples was ad hoc; we studied
them because, in the end, it paid to do so. We now see that hyperplane
triples arise naturally via the Fourier transform.

There is an amazing formula counting the number of lines contained
in a set S.

Proposition 8. Let S be a subset of Fd
3 that contains p points and l

lines. Then

p + 6l =
1

3d

∑

z∈F
d

3

τ 3(z),

where τ is the hyperplane triple function of S.
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In [1], Bierbrauer and Edel use the formula above together with some
clever estimates of |τ 3(z)| to prove the Fourier bound of Proposition 6.
We refer the reader to their paper for more details. We now summarize
the proof of Edel, Ferret, Landjev, and Storme [6] that a5 = 45.

Proposition 9. A maximal 5-cap has 45 points.

Proof. Figure 6 contains a 5-cap with 45 points, so we only need to show
that there is none with 46 points. Suppose for a contradiction that C is
a 5-cap with 46 points. By the Fourier analysis bound of Proposition 6,
if every hyperplane intersects C in at most 18 points, then C can have
at most 45 points. Thus, there must be a hyperplane H intersecting C
in 19 or 20 points. Deleting a point of C not on H produces a 5-cap
with 45 points such that H is a hyperplane intersecting in 19 or 20
points. However, in [6] it is shown that every 5-cap with 45 points has
no hyperplanes intersecting in 19 or 20 points. The proof exploits an
ingenious identity in the equations for counting marked hyperplanes,
together with an exhaustive computer search. �

Solidity

In this section we discuss what is known about high-dimensional
maximal caps. In [3], A. Robert Calderbank and Peter Fishburn create
very large high-dimensional caps via product constructions based on
large low-dimensional caps. As a measure of the “largeness” of a cap,
define the solidity of a d-cap C to be

σ(C) = d

√

|C|,
and define the asymptotic solidity of maximal caps to be the supremum
of the solidities of maximal caps,

σ = sup
d
{ d
√

ad}.

Thus, asymptotic solidity is at least the solidity of any particular cap.
Since every d-cap has less than 3d points, the asymptotic solidity is at
most 3. On the other hand, the cap consisting of all 2d points with all
components 0 or 1 shows that the solidity is at least 2. The central
open question is the following.

Question. Is the asymptotic solidity less than 3?

The definition of asymptotic solidity leaves open the possibility that
for some low d there is a d-cap with high solidity, but for all larger
d every d-cap has a substantially smaller solidity. This would make
the name “asymptotic solidity” rather questionable, but the following
proposition shows that this never happens.
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Proposition 10. Asymptotic solidity is the limit as d → ∞ of the
solidity of maximal d-caps.

Proof. This would be a very short proof if we knew that the solidity of
maximal caps σd was an increasing sequence. Unfortunately, this is not
known, so we will take a more roundabout approach. We first note that
given a d-cap C we can construct a 2d-cap C ′ with the same solidity.
We do this by taking the product of C with itself: each point of C ′

has as its first d coordinates a point of C, and as its last d coordinates
another point of C, so |C ′| = |C|2. Then σ(C ′) = 2d

√

|C|2 = σ(C).
In fact we can also apply this construction to take the product of a
d1-cap C1 and a d2-cap D2 to get a (d1 + d2)-cap C ′ with solidity

σ(C ′) = d1+d2

√

|C1||C2|. For example, taking the repeated product of a
d-cap with itself n times gives an (nd)-cap with the same solidity. So
we can replace sup by lim sup in the definition of asymptotic solidity,
justifying the “asymptotic” in the name.

We now note that this product construction shows that the function
f : N → N defined by setting f(d) to be the size ad of a maximal d-cap
satisfies

f(m + n) ≥ f(m)f(n).

Then Fekete’s Lemma (see, for example [20, Lemma 11.6]) implies that
limn→∞ f(n)1/n exists. Since solidity is the lim sup of f(n)1/n, this limit
must equal σ, completing the proof.

�

Calderbank and Fishburn use this product construction to show
σ > 2.210147. In [3], they explicitly give two 6-caps, each with 112
points. They exploit these caps in a refined version of the above prod-
uct construction to get a 13,500-cap with the required solidity. This
result has been improved, with a simpler cap, by Yves Edel, who has
constructed a 62-cap with solidity 2.214781, and a 480-cap with solidity
2.21739 [5].

Projective Caps

A basic property of an affine set game is that each pair of cards is
contained in a unique set. Are there other set-like card games with
this property? Yes! In fact, there is a non-affine set-like game with
only seven cards. Consider the Fano plane in Figure 10.

The seven points of the Fano plane are indicated by the dots in the
figure. Each line of the Fano plane consists either of the three dots
lying on a line segment of the diagram, or the three dots lying on the
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Figure 10: The Fano plane.

circle. In the Fano plane, any pair of points determines a unique line,
and every line has precisely three points. We define the Fano set game
to be a card game with one card for each point of the Fano plane, where
three cards form a set if the corresponding points of the Fano plane
are collinear.

There is a natural projective geometric construction of the Fano
plane. Given a vector space V = Fd+1

q , the projective space of V ,

PdFq, is an object tailored to encode the incidence structure of linear
subspaces of V . In particular, the elements of the set PdFq are just
the one-dimensional subspaces of V . These are called the projective
points of PdFq. Given two distinct one-dimensional subspaces, there
is a unique two-dimensional subspace containing them. Thus, if we
call the two-dimensional subspaces of V the projective lines, then we
have the nice fact that any two projective points determine a unique
projective line.

When q = 2, then each projective line contains exactly three projec-
tive points. To see this, notice that since the underlying field is F2, any
one-dimensional subspace contains exactly two points: the zero vec-
tor, and the non-zero basis vector. Thus, there is a bijection between
non-zero vectors and projective points. Let L be a two-dimensional
subspace of Fd+1

2 representing a projective line, and let {e, f} be a vec-
tor space basis of L. Then L contains exactly four vectors: 0, e, f and
e + f . The non-zero vectors represent the three projective points of
L. Amazingly, this gives rise to the same test for collinearity as in the
affine case:

The Projective Collinearity Rule: Three non-zero
vectors a, b, c ∈ Fd+1

2 represent collinear projective points
if and only if a + b + c = 0.

The vector space F3
2 has eight vectors, and so the projective space

P2F2 has seven projective points. In fact, P2F2 is the Fano plane. We
define a projective set game of dimension d to be a card game with
one card for each projective point in PdF2, where three cards form a
set if the corresponding projective points are collinear. Then the Fano
set game is just the projective set game of dimension two.
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H. Tracy Hall [8] has devised for himself a deck of cards for a playable
projective set game of dimension five. The key step of his construction
is to group the components of a vector of F6

2 into three pairs,

a = (x1, x2, y1, y2, z1, z2) = ((x1x2), (y1y2), (z1z2)),

and then to interpret each pair as the binary expansion of one of the
integers 0,1,2, or 3. For example,

a = (1, 0, 0, 1, 0, 0) = ((10), (01), (00)) = (2, 1, 0).

To further encode the vector as a design on a card, we associate a sym-
bol to each of the three integers 1, 2, or 3, and use the blank symbol for
the integer 0. We print three such symbols on each card, one for each
coordinate, and distinguish the symbols by printing them in three dif-
ferent fonts. In Figure 11 we do this using different families of symbols
for the different coordinates: {N, �, F}, {<, =, >}, and {Z, R, Q}. Hall
has a much cuter way to do this using the characters from a popular
children’s game.

With respect to this method of encoding vectors, the projective
collinearity rule has the following translation.

The Projective set Rule: Three cards are called a
set, if each font appears in exactly one of the following
three ways:
• Not at all.
• As the same symbol exactly twice, and not as any

other symbol.
• As all three symbols.

F
>

Q

�
=

R

N
<

Z

F

R

F
< <

R

F

Q

� N

Q

Figure 11: Can you find all four projective sets?

Hall reports teaching, and then losing at, this game to his nine-year-
old niece.

Are there still other set-like games beyond affine and projective
set? Yes and no. A Steiner triple system is a set X together with a
collection S of three element subsets of X, such that, given any two
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elements x, y ∈ X, there is a unique triple {x, y, z} ∈ S. Interpreting
elements of X as cards, and triples in S as sets, then we obtain a set-
like game from any Steiner triple system. The affine and projective
set card games are examples of Steiner triple systems, but it turns out
that there are many more exotic Steiner triple systems. Their study is
a very rich subject, and the interested reader should look at the book
of Charles Colbourn and Alexander Rosa [4].

A natural invariant attached to any Steiner triple system is its sym-
metry group. This is defined in precisely the same way we defined
symmetry groups of affine set games, namely, as the permutations of
the points of X taking triples in S to triples in S. One way of studying
Steiner triple systems is via their symmetry groups. A notable property
of the symmetry groups of affine and projective set games is that their
symmetry groups are 2-transitive on cards; that is, there is a symmetry
taking any ordered pair of cards to any other ordered pair of cards. In
particular, this means that, up to symmetry, there is only one type of
set. To capture this, let us define an abstract set game to be any
Steiner triple system where the symmetry group acts 2-transitively on
points. We have the following deep theorem classifying abstract set

games, first conjectured in 1960 by Marshall Hall, Jr. [9].

Theorem 11. The only abstract set games are affine and projective
set games, in Fd

3 and PdF2 respectively.

This result is due to Jennifer Key and Ernest Shult [16], Hall [10],
and William Kantor [15]. Interestingly, the proofs use part of the
classification of finite simple groups.

If we actually play projective set we want to know how many cards
need to be dealt to guarantee a set. Just as in the affine case we call a
collection of points in PdF2 containing no three points on a projective
line a cap. The problem of finding maximal caps for projective set

was solved in 1947 by Raj Chandra Bose. In [2], he showed that the
maximal caps of PdF2 have 2d points. Bose’s interest in this problem
certainly didn’t stem from set, as the game was not to be invented for
another 27 years. Rather, he was coming at it from quite another direc-
tion, namely, the theory of error-correcting codes, which is the study of
the flawless transmission of messages over noisy communication lines.
As detailed in the book of Raymond Hill [14], there is a correspondence
between projective caps in PdF2 and families of efficient codes. Specifi-
cally, if we form the matrix whose columns are vectors representing the
projective points of the cap, then the kernel of this matrix is a linear
code with Hamming weight four. The more points the cap contains,
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the more “code-words” the corresponding code has, and so this natu-
rally motivates the problem of finding maximal projective caps. Bose
completely solved this problem when q = 2, but, as in the affine case,
things become much more difficult when q = 3. We denote by bd the
size of a maximal projective cap in PdF3. The known values of bd are
given in the table below.

d 1 2 3 4 5 6
bd 2 4 10 20 56 ?

The sizes in dimensions 2 and 3 are due to Bose [2], dimension 4 is
due to Pellegrino [19], and dimension 5 is due to Hill [11, 12]. We note
that we always have ad ≤ bd, since there is a copy of Fd

3 inside PdF3, so
Pellegrino’s result is the first proof that a4 ≤ 20.

Even though there is no abstract set game with cards given by points
of P5F3, there is still some interesting set-theory associated with the
study of maximal projective caps in this space. In particular, the 45-
point affine cap in Figure 6 was constructed by deleting a hyperplane
from the 56-point projective 5-cap given by Hill in Figure 4 of [13].
Uniqueness of this affine cap was shown in [6] to be a consequence of
the uniqueness of the projective cap, which in turn was demonstrated
by Hill in [12] by means of a code-theoretic argument.
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