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Measurable circle squaring

By  Lukasz Grabowski, András Máthé, and Oleg Pikhurko

Abstract

Laczkovich proved that if bounded subsets A and B of Rk have the same

non-zero Lebesgue measure and the upper box dimension of the boundary

of each set is less than k, then there is a partition of A into finitely many

parts that can be translated to form a partition of B. Here we show that

it can be additionally required that each part is both Baire and Lebesgue

measurable. As special cases, this gives measurable and translation-only

versions of Tarski’s circle squaring and Hilbert’s third problem.

1. Introduction

We call two sets A,B ⊆ Rk equidecomposable and denote this as A ∼ B

if there are a partition A = A1 ∪ ... ∪ An (into finitely many parts) and

isometries γ1, ... , γn of Rk such that the images of the parts γ1(A1), ... , γn(An)

partition B. In other words, we can cut A into finitely many pieces and

rearrange them to form the set B. When this can be done is a very basic

question that one can ask about two sets and, as Dubins, Hirsch, and Karush

[6, Page 239] write, “variants of the problems studied here already occur in

Euclid”. We refer the reader to various surveys and expositions of this area

([8, 9, 11, 19, 20, 21, 39]) as well as the excellent book by Tomkowicz and

Wagon [38].

The version that is closest to our everyday intuition (e.g. via puzzles like

“Tangram”, “Pentomino”, or “Eternity”) is perhaps the dissection congruence

in R2 where the pieces have to be polygonal and their boundary can be ignored

when taking partitions. A well-known example from elementary mathematics

is finding the area of a triangle by dissecting it into a rectangle. In fact, as
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Mathématiques de Paris during the programme Marches Aléatoires et Géométrie Asympto-
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it was discovered around 1832 independently by Bolyai and Gerwien, any two

polygons of the same area are congruent by dissections. (Apparently, Wallace

proved this result already in 1807; see [38, Pages 34–35] for a historical account

and further references.) The equidecomposition problem for polygons is also

completely resolved: a result of Tarski [34] (see e.g. [38, Theorem 3.9]) gives

that any two polygons of the same area are equidecomposable.

Banach and Tarski [3] proved that, in dimensions 3 or higher, any two

bounded sets with non-empty interior are equidecomposable; in particular,

we get the famous Banach-Tarski Paradox that a ball can be doubled. On the

other hand, as it was also shown in [3] by using the earlier results of Banach [2],

a ball in Rk cannot be doubled for k = 1, 2. This prompted von Neumann [27]

to investigate what makes the cases k = 1, 2 different using the group-theoretic

point of view, which started the study of amenable groups.

Around that time, Tarski [35] asked if the disk and square in R2 of the

same area are equidecomposable, which became known as Tarski’s circle squar-

ing. Von Neumann [27] showed that circle squaring is possible if arbitrary

measure-preserving affine transformations are allowed. On the other hand,

some negative evidence was provided by Dubins, Hirsch, and Karush [6] who

showed that a circle and a square are not scissor congruent (when the pieces

are restricted to be topological disks and their boundary can be ignored) and by

Gardner [7] who proved that circle-squaring is impossible if we use a locally dis-

crete subgroup of isometries of R2. However, the deep paper of Laczkovich [15]

showed that the answer to Tarski’s question is affirmative. In fact, his main

result (coming from the papers [15, 16, 17]) is much more general and stronger.

In order to state it, we need some definitions.

We call two sets A,B ⊆ R
k equivalent (and denote this by A

Tr∼ B)

if they are equidecomposable using translations, that is, there are partitions

A = A1∪ ... ∪Am and B = B1∪ ... ∪Bm, and vectors v1, ... ,vm ∈ Rk such that

Bi = Ai + vi for each i ∈ {1, ... ,m}. Let λ = λk denote the Lebesgue measure

on Rk. The box (or grid, or upper Minkowski) dimension of X ⊆ Rk is

dim2(X) := k − lim inf
ε→ 0+

log λ
Ä
{x ∈ Rk : dist(x, X) 6 ε}

ä
log ε

,

where dist(x, X) means e.g. the L∞-distance from the point x to the set X. Let

∂X denote the topological boundary of X. It is easy to show that if A ⊆ Rk

satisfies dim2(∂A) < k, then A is Lebesgue measurable and, furthermore,

λ(A) > 0 if and only if A has non-empty interior. With these observations,

the result of Laczkovich can be formulated as follows.

Theorem 1.1 (Laczkovich [15, 16, 17]). Let k > 1 and let A,B ⊆ Rk be

bounded sets with non-empty interior such that λ(A) = λ(B), dim2(∂A) < k,

and dim2(∂B) < k. Then A and B are equivalent.
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Theorem 1.1 applies to circle squaring since the boundary of each of these

sets has box dimension 1. As noted in [16], the inequality dim2(∂A) < k holds

if A ⊆ Rk is a convex bounded set or if A ⊆ R2 has connected boundary of

finite linear measure; thus Theorem 1.1 applies to such sets as well.

Note that the condition that λ(A) = λ(B) is necessary in Theorem 1.1. In-

deed, the group of translations of Rk is amenable (since it is an Abelian group)

and therefore the Lebesgue measure on Rk can be extended to a translation-

invariant finitely additive measure defined on all subsets (and so equivalent sets

which are measurable must necessarily have the same measure); see e.g. [38,

Chapter 12] for a detailed discussion. Laczkovich [18] showed that one cannot

replace the box dimension with the Hausdorff dimension in Theorem 1.1; see

also [22] for further examples of non-equivalent sets.

The proof of Theorem 1.1 by Laczkovich directly relies on the Axiom of

Choice in a crucial way. Thus the pieces that he obtains need not be mea-

surable. Laczkovich [15, Section 10] writes: “The problem whether or not the

circle can be squared with measurable pieces seems to be the most interesting.”

This problem remained open until now, although some modifications of

it were resolved. Henle and Wagon (see [38, Theorem 9.3]) showed that, for

any ε > 0, one can square a circle with Borel pieces if one is allowed to use

similarities of the plane with scaling factor between 1−ε and 1 +ε. Pieces can

be made even more regular if some larger class of maps can be used (such as

arbitrary similarities or affine maps), see e.g. [11, 31, 32, 33]. Also, if countably

many pieces are allowed, then a simple measure exhaustion argument shows

that, up to a nullset, one can square a circle with measurable pieces (see [3,

Theorem 41] or [38, Theorem 11.26]); the error nullset can be then eliminated

by e.g. applying Theorem 1.1.

The authors of this paper prove in [10] that every two bounded measurable

sets A,B ⊆ Rk, k > 3, with non-empty interior and of the same measure are

equidecomposable with Lebesgue measurable pieces. In particular, this gives a

measurable version of Hilbert’s third problem (as asked by Wagon [40, Ques-

tion 3.14]): one can split a regular tetrahedron into finitely many measurable

pieces and rearrange them into a cube. These results rely on the spectral gap

property of the natural action of SO(k) on the (k − 1)-dimensional sphere in

R
k for k > 3 and do not apply when k 6 2. Also, the equidecompositions

obtained in [10] cannot be confined to use translations only.

Here we fill a part of this gap. Namely, our main main result (Theorem 1.2)

shows that it can be additionally required in Theorem 1.1 that all pieces are

Lebesgue measurable.

In fact, Theorem 1.2 gives pieces that are also Baire measurable (or Baire

for short), that is, each one is the symmetric difference of a Borel set and

a meagre set. The study of equidecompositions with Baire sets was largely



4  L. GRABOWSKI, A. MÁTHÉ, and O. PIKHURKO

motivated by Marczewski’s problem from 1930 whether Rk admits a non-trivial

isometry-invariant finitely additive Borel measure that vanishes on bounded

meagre sets. It is not hard to show that the answer is positive for k 6 2, see

e.g. [38, Corollary 13.3]. However, the problem for k > 3 remained open for over

60 years until it was resolved in the negative by Dougherty and Foreman [4, 5]

who proved in particular that any two bounded Baire sets A,B ⊆ Rk with

non-empty interior are equidecomposable with Baire measurable pieces (and

thus a ball can be doubled with Baire pieces). A short and elegant proof

of a more general result was recently given by Marks and Unger [26] (see

also [12]). However, as noted in [26, Page 406], the problem whether circle

squaring is possible with Baire measurable parts remained open. Also, the

results in [4, 5, 26] do not apply to the translation equidecomposability
Tr∼,

even in higher dimensions. Here we resolve these questions in the affirmative,

under the assumptions of Theorem 1.1:

Theorem 1.2. Let k > 1 and let A,B ⊆ Rk be bounded sets with non-

empty interior such that λ(A) = λ(B), dim2(∂A) < k, and dim2(∂B) < k.

Then A
Tr∼ B with parts that are both Baire and Lebesgue measurable.

In addition to implying measurable translation-only versions of Tarski’s

circle squaring, Hilbert’s third problem, and Wallace-Bolyai-Gerwien’s theorem

(a question of Laczkovich [15, Page 114]), Theorem 1.2 also disproves the

following conjecture of Gardner [8, Conjecture 5] for all k > 2.

Conjecture 1.3. Let P be a polytope and K a convex body in Rk. If P

and K are equidecomposable with Lebesgue measurable pieces under the isome-

tries from an amenable group, then P and K are equidecomposable with convex

pieces under the same isometries.

Indeed, for example, let P be a cube and K be a ball of the same volume.

It is not hard to show directly that K and P are not equidecomposable with

convex pieces, even under the groups of all isometries of Rk for k > 2. Since

Theorem 1.2 uses only translations (that form an amenable group), Conjec-

ture 1.3 is false.

This paper is organised as follows. In Section 2 we reduce the problem to

the torus Tk := Rk/Zk and state a sufficient condition for measurable equiva-

lence in Theorem 2.2. We also describe there how Theorem 1.2 can be deduced

from Theorem 2.2, using some results of Laczkovich [16]. The main bulk of

this paper consists of the proof of Theorem 2.2 in Sections 4 and 5. These

sections are dedicated to respectively Lebesgue and Baire measurability (while

some common definitions and auxiliary results are collected in Section 3). We

organised the presentation so that Sections 4 and 5 can essentially be read

independently of each other. Section 6 contains some concluding remarks.
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In order to avoid ambiguities, a closed (resp. half-open) interval will al-

ways mean an interval of integers (resp. reals); thus, for example, [m,n] :=

{m,m + 1, ... , n} ⊆ Z while [a, b) := {x ∈ R : a 6 x < b}. Also, we denote

[n] := {1, ... , n} and N := {0, 1, 2, . . .}.

2. Sufficient condition for measurable equivalence

The k-dimensional torus Tk is the quotient of the Abelian group (Rk,+)

by the subgroup (Zk,+). We identify Tk with the real cube [0, 1)k, endowed

with the addition of vectors modulo 1.

By scaling the bounded sets A,B ⊆ Rk by the same factor and translating

them, we can assume that they are subsets of [0, 1)k. Note that if A,B ⊆
[0, 1)k are (measurably) equivalent with translations taken modulo 1, then

they are (measurably) equivalent in Rk as well using at most 2k times as many

translations. (In fact, if each of A,B has diameter less than 1/2 with respect

to the L∞-distance, then we do not need to increase the number of translations

at all.) So we work inside the torus from now on.

Suppose that we have fixed some vectors x1, ... ,xd ∈ Tk that are free, that

is, no non-trivial integer combination of them is the zero element of (Tk,+) (or,

equivalently, x1, ... ,xd, e1, ... , ek, when viewed as vectors in Rk, are linearly

independent over the rationals, where e1, ... , ek are the standard basis vectors

of Rk).

When reading the following definitions (many of which implicitly depend

on x1, ... ,xd), the reader is advised to keep in mind the following connection

to Theorems 1.1 and 1.2: we fix some large integer M and try to establish the

equivalence A
Tr∼ B by translating only by vectors from the set

(1) VM :=
¶
n1x1 + ... + ndxd : n ∈ Zd, ‖n‖∞ 6M

©
.

Thus, if we are successful, then the total number of pieces is at most |VM | =

(2M + 1)d.

By a coset of u ∈ Tk we will mean the coset taken with respect to the

subgroup of (Tk,+) generated by x1, ... ,xd, that is, the set {u +
∑d
j=1 njxj :

n ∈ Zd} ⊆ Tk. For X ⊆ Tk, we define

Xu :=
¶
n ∈ Zd : u + n1x1 + ... + ndxd ∈ X

©
.

Informally speaking, Xu ⊆ Zd records which elements of the coset of u ∈ Tk
are in X.

If, for every u ∈ Tk, we have a bijection Mu : Au → Bu such that

(2) ‖Mu(n)− n‖∞ 6M, for all n ∈ Au,

then Theorem 1.1 follows. Indeed, using the Axiom of Choice select a set

U ⊆ Tk that intersects each coset in precisely one element. Now, each a ∈ A
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can be uniquely written as u +
∑d
j=1 njxj with u ∈ U and n ∈ Zd; if we

assign a to the piece which is translated by the vector
∑d
j=1(mj−nj)xj where

m := Mu(n), then we get the desired equivalence A
Tr∼ B. This reduction

was used by Laczkovich [15, 16, 17]; of course, the main challenge he faced

was establishing the existence of the bijections Mu as in (2). Here, in order

to prove Theorem 1.2, we will additionally need that the family (Mu)u∈Tk is

consistent for different choices of u and gives measurable parts.

By an n-cube Q ⊆ Zd we mean the product of d intervals in Z of size n,

i.e. Q =
∏d
j=1[nj , nj+n−1] for some (n1, ... , nd) ∈ Zd. If n is an integer power

of 2, we will call the cube Q binary. Given a function Φ : {2i : i ∈ N} → R

and a real δ > 0, a set X ⊆ Zd is called Φ-uniform (of density δ) if, for every

i ∈ N and 2i-cube Q ⊆ Zd, we have that

(3)
∣∣∣ |X ∩Q| − δ |Q| ∣∣∣ 6 Φ(2i).

In other words, this definition says that the discrepancy with respect to binary

cubes between the counting measure of X and the measure of constant density

δ is upper bounded by Φ. A set Y ⊆ Tk is called Φ-uniform (of density δ with

respect to x1, ... ,xd) if Yu is Φ-uniform of density δ for every u ∈ Tk.
These notions are of interest to us because of the following sufficient

condition for A
Tr∼ B that directly follows from Theorems 1.1 and 1.2 in

Laczkovich [17].

Theorem 2.1 (Laczkovich [17]). Let k, d > 1 be integers, let δ > 0, let

x1, ... ,xd ∈ Tk be free, let a function Φ : {2i : i ∈ N} → R satisfy

(4)
∞∑
i=0

Φ(2i)

2(d−1)i
<∞,

and let sets A,B ⊆ Tk be Φ-uniform of density δ with respect to x1, ... ,xd.

Then A
Tr∼ B, using translations that are integer combinations of the vectors xj .

Roughly speaking, the condition (4) states that the discrepancy of Au and

Bu with respect to any 2i-cube Q decays noticeably faster than the size of the

boundary of Q as i → ∞. On the other hand, if a bijection Mu as in (2)

exists, then the difference between the number of elements in Au and Bu that

are inside any n-cube Q is trivially at most (2M + 1)d · 2d · nd−1 = O(nd−1).

Theorems 1.1 and 1.5 in [17] discuss to which degree the above conditions are

best possible.

In this paper we establish the following sufficient condition for measurable

equivalence.
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Theorem 2.2. Let k > 1 and d > 2 be integers, let δ > 0, let x1, ... ,xd ∈
T
k be free, and let a function Ψ : {2i : i ∈ N} → R satisfy

(5)
∞∑
i=0

Ψ(2i)

2(d−2)i
<∞.

Define Φ : {2i : i ∈ N} → R by Φ(2i) := 2i · Ψ(2i) for i ∈ N.

(1) If Lebesgue measurable sets A,B ⊆ Tk are Ψ -uniform of density δ with

respect to every (d−1)-tuple of distinct vectors from {x1, ... ,xd}, then

A
Tr∼ B, where all pieces are Lebesgue measurable and are translated by

integer combinations of the vectors xj .

(2) If Baire sets A,B ⊆ T
k are Φ-uniform of density δ with respect to

x1, ... ,xd, then A
Tr∼ B, where all pieces are Baire and are translated

by integer combinations of the vectors xj .

Remark 2.3. In the notation of Theorem 2.2, if X ⊆ Tk is Ψ -uniform

with respect to any d− 1 vectors from {x1, ... ,xd}, then X is Φ-uniform with

respect to x1, ... ,xd. (Indeed, we can trivially represent any d-dimensional 2i-

cube in Zd as the disjoint union of 2i copies of the (d−1)-dimensional 2i-cube.)

Thus the uniformity assumption of Part 1 is stronger than that of Part 2 (or of

Theorem 2.1). We do not know if the Φ-uniformity alone is sufficient in Part 1.

The following result of Laczkovich [16] shows how to pick vectors that

satisfy Theorem 2.1. Since it is not explicitly stated in [16], we briefly sketch

its proof.

Lemma 2.4 (Laczkovich [16]). Let an integer k > 1 and a set X ⊆ Tk
satisfy dim2(∂X) < k. Then there is d(X) such that, for every d > d(X),

if we select uniformly distributed independent random vectors x1, ... ,xd ∈ Tk
then with probability 1 there is C = C(X;x1, ... ,xd) such that X is Φ-uniform

of density λ(X) with respect to x1, ... ,xd, where Φ(2i) := C · 2(d−2)i for i ∈ N.

Sketch of Proof. By a box in Tk we mean a product of k sub-intervals of

[0, 1). Let d > 1 be arbitrary and let x1, ... ,xd ∈ Tk be random. By applying

the Erdős-Turán-Koksma inequality, one can show that, with probability 1,

there is C ′ = C ′(x1, ... ,xd) such that, for every box Y ⊆ Tk, u ∈ Tk, and

N -cube Q ⊆ Zd, we have that

(6)
∣∣∣ |Yu ∩Q| − λ(Y ) |Q|

∣∣∣ 6 Υ (N) := C ′ logk+d+1N,

see [16, Lemma 2]. In other words, boxes have very small discrepancy with

respect to arbitrary cubes. (In particular, each box is Υ -uniform.)

So, assume that (6) holds and that x1, ... ,xd are free. Fix a real α ∈ (0, 1]

satisfying dim2(∂X) < k−α. A result of Niederreiter and Wills [28, Kollorar 4]

implies that the set X is Ψ -uniform (with respect to x1, ... ,xd) for some Ψ(N)
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Figure 1. i) Circle ∂X and ε-regular grid; ii) boxes in B;

iii) boxes in I

that grows as O(Υ (N)α/kNd−αd/k) as N → ∞. In particular, we can satisfy

Lemma 2.4 by letting d(X) be any integer such that αd(X)/k > 2. We refer

the reader to [16, Page 62] for further details.

Let us also outline the ideas behind [28, Kollorar 4] in order to show how

the box dimension of ∂X comes into play. The definition of α implies that the

measure of points within L∞-distance ε from the boundary of X is at most εα

for all small ε > 0. Let N be large and let ε := b(Nd/Υ (N))1/kc−1. Partition

T
k into a grid of boxes which is ε-regular, meaning that side lengths are all

equal to ε. Let B consist of those boxes that intersect ∂X. By the definition

of α, we have that |B| 6 εα/εk. Next, iteratively merge any two boxes in the

interior of X if they have the same projection on the first k − 1 coordinates

and share a (k− 1)-dimensional face. Let I be the set of the final boxes in the

interior of X. Figure 1 illustrates the special case when X is a disk. The size

of I is at most ε−k+1 (the number of possible projections) plus |B| (as each

box in B can “prevent” at most one merging).

Pick any u ∈ Tk and an N -cube Q ⊆ Zd. We take the dual point of view

where we fix Q′ := {u+
∑d
j=1 njxj : n ∈ Q} ⊆ Tk and measure its discrepancy

with respect to boxes. Namely, we have by (6) that D′(Y ) 6 Υ (N) for every

box Y ⊆ Tk, where we define D′(Y ) :=
∣∣∣ |Q′ ∩ Y | − λ(Y )Nd

∣∣∣. This implies

that

D′(X) 6
∑
Y ∈I

D′(Y ) +
∑
Y ∈B

D′(Y ∩X) 6 |I| · Υ (N) + |B| (εkNd + Υ (N)),

giving the stated upper bound after routine simplifications. �

Thus Lemma 2.4 shows that the uniformity assumption of Part 2 of The-

orem 2.2 can be satisfied if the sets A are B are as in Theorem 1.2. The lemma

also suffices for Part 1 of Theorem 2.2, thus leading to the proof of Theorem 1.2

as follows.
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Proof of Theorem 1.2. Observe that the assumption dim2(∂X) < k im-

plies that X ⊆ Tk is both Baire and Lebesgue measurable. For example, let us

argue that X is Baire. Every set is the union of its interior (an open set) and

a subset of its boundary. So it is enough to show that ∂X is nowhere dense.

Take any ball U ⊆ Tk of radius r > 0. As ε→ 0, the ε-neighbourhood of ∂X

has measure at most εα for some constant α > 0. This is strictly smaller than

((r − ε)/r)k λ(U), the volume of the ball U ′ concentric to U of radius r − ε,
so at least one point x ∈ U ′ is uncovered. The open ball of radius ε around x

lies entirely inside U and avoids ∂X. Thus ∂X is nowhere dense, as desired.

Therefore, the sets A and B in Theorem 1.2 are both Baire and Lebesgue

measurable. Next, let us show that we can satisfy the uniformity assumption

of Part 1 of Theorem 2.2.

Let d := max(d(A), d(B)) + 1, where d(X) is the function provided by

Lemma 2.4. Fix free vectors x1, ... ,xd ∈ Tk such that every (d − 1)-tuple of

them satisfies the conclusion of Lemma 2.4 for both A and B. Such vectors

exist since the desired properties hold with probability 1 if we sample the

vectors xj independently. Let C < ∞ be the maximum, over all choices of

X ∈ {A,B} and integers 1 6 i1 < ... < id−1 6 d, of the corresponding

constants C(X;xi1 , ... ,xid−1
). Then the assumptions of Part 1 of Theorem 2.2

hold with Ψ(2i) := C · 2(d−3)i (and the same function works with Part 2).

Theorem 2.2 implies that A and B are equivalent with Baire (resp. Lebes-

gue) measurable pieces. Allowing empty pieces, let this be witnessed respec-

tively by partitions A = ∪v∈VA′v and A = ∪v∈VA′′v for some finite V ⊆ Tk,
where the pieces A′v and A′′v are translated by v. These equidecompositions

can be “merged” as follows. Take a nullset X ⊆ Tk such that Tk\X is meagre;

the existence of X follows from e.g. [29, Theorem 1.6]. We can additionally

assume that X is invariant under all translations from V. (For example, take

the union of all translates of X by integer combinations of the vectors from V;

it is still a nullset since we take countably many translates.) Now, we combine

the Baire partition of A restricted to X with the Lebesgue partition restricted

to Tk \X. Specifically, let Av := (A′v ∩X)∪ (A′′v \X) for v ∈ V. Clearly, these

sets partition A while, by the invariance of X, the corresponding translates

Av +v, for v ∈ V, partition B. Also, each part Av is both Baire and Lebesgue

measurable. This proves Theorem 1.2. �

3. Some common definitions and results

Our proofs of Parts 1 and 2 of Theorem 2.2 proceed somewhat differently.

This section collects some definitions and auxiliary results that are common

to both parts. Here, let measurable mean Baire or Lebesgue measurable, de-

pending on which σ-algebra we are interested in.
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Since we will study equidecompositions from graph-theoretic point of view,

we find it convenient to adopt some notions of graph theory to our purposes

as follows.

By a bipartite graph we mean a triple G = (V1, V2, E), where V1 and V2

are (finite or infinite) vertex sets and E ⊆ V1 × V2 is a set of edges. (Note

that E consists of ordered pairs to avoid ambiguities when V1 and V2 are not

disjoint.) The subgraph induced by sets X1 and X2 is

(7) G[X1, X2] :=
Ä
V1 ∩X1, V2 ∩X2, E ∩ (X1 ×X2)

ä
.

A matching in G is a subsetM of E which gives a partial injection from V1 to

V2 (that is, if (a, b) and (a′, b′) are distinct pairs inM then a 6= a′ and b 6= b′).

In fact, we will identify a matching with the corresponding partial injection. In

particular, the sets of matched points in V1 and V2 can be respectively denoted

by M−1(V2) and M(V1). A matching M is perfect if it is a bijection from

V1 to V2 (that is, if M(V1) = V2 and M−1(V2) = V1). For a set X lying in

one part of G, let its neighbourhood Γ (X) consist of those vertices in the other

part that are connected by at least one edge to X. (In the functional notation,

we have Γ (X) = E(X) for X ⊆ A and Γ (X) = E−1(X) for X ⊆ B.) If G is

locally finite (that is, every degree |Γ ({x})| is finite), then Rado’s theorem [30]

states that G has a perfect matching if and only if

(8) |Γ (X)| > |X|, for every finite subset X of A or B.

Note that if V1∩V2 = ∅ then we get the standard notions of graph theory with

respect to the corresponding undirected graph on V1 ∪ V2.

Thus, an equidecomposition between A,B ⊆ Tk where all translations are

restricted to the set VM that was defined in (1) is nothing else than a perfect

matching in the bipartite graph

(9) G := (A,B,E),

where E consists of all pairs (a, b) ∈ A×B with b− a ∈ VM .

Assume from now on that both A and B are measurable (which will be

the case in all applications). Then, each of the vertex parts of the graph G is

additionally endowed with the σ-algebra of measurable sets; objects of this type

appear in orbit equivalence [13], limits of sparse graphs [24], and other areas.

A matching M in G is called measurable if the set {a ∈ A :M(a)− a = v} is

measurable for each v ∈ VM .

Also, we will consider the subgraphs of G induced by cosets, viewing these

as graphs on subsets of Zd. Namely, for u ∈ Tk, consider the bipartite graph

Gu := (Au, Bu, Eu), where

Eu :=
¶

(a, b) ∈ Au ×Bu : ‖a− b‖∞ 6M
©
.
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Again, a bijection Mu : Au → Bu as in (2) is nothing else than a perfect

matching in Gu and, in order to prove Theorem 2.1, it is enough to show that

each Gu has at least one perfect matching. For the proof of Theorem 2.2, we

will also need that the dependence on u is “equivariant” and “measurable” in

the following sense.

Namely, we call the family (Mu)u∈Tk with Mu being a matching in Gu
equivariant if, for all u ∈ Tk and n ∈ Zd, we have

(10) Mu+n1x1+ ...+ndxd
= {(a− n, b− n) : (a, b) ∈Mu}.

Note that, if (10) holds, then we can define a partial injectionM : A→ B

as follows. In order to find the image M(a) of a ∈ A, take any u such that

a is in the coset of u, say a = u +
∑d
j=1 njxj with n ∈ Zd. Note that

n ∈ Au. If n is not matched by Mu, then let M(a) be undefined; otherwise

let M(a) := u +
∑d
j=1mjxj ∈ B, where m :=Mu(n). It is easy to see that,

by (10), the definition ofM(a) does not depend on the choice of u (and it will

often be notationally convenient to take u = a).

The concept of equivariance can be applied to other kinds of objects, with

the definition being the obvious adaptation of (10) in all cases that we will

encounter. Namely, the “meta-definition” is that if we shift the coset reference

point from u to u + n1x1 + ... + ndxd for some n ∈ Zd, then the object does

not change, i.e. its new coordinates are all shifted by −n. For example, for

every X ⊆ Tk the family of sets (Xu)u∈Tk is equivariant and, conversely, every

equivariant family of subsets of Zd gives a subset of Tk. As another example,

the family (Gu)u∈Tk is equivariant and corresponds to the bipartite graph G
defined in (9).

We call an equivariant family (Mu)u∈Tk withMu being a (not necessarily

perfect) matching in Gu measurable if the natural encoding of the correspond-

ing matchingM by a functionTk → [−M,M ]d∪{unmatched} is measurable.

(Note that this is equivalent to the measurability of M as defined after (9).)

Again, this concept can be applied to other objects: for example, an equivari-

ant family (Xu)u∈Tk of subsets of Zd is called measurable if the corresponding

encoding Tk → {0, 1} (i.e. the corresponding set X ⊆ Tk) is measurable.

Thus, if we can find an equivariant and measurable family (Mu)u∈Tk

with Mu being a perfect matching in Gu for each u ∈ Tk, then we have a

measurable bijection M : A→ B. Furthermore, the differences M(a)− a for

a ∈ A are all restricted to the finite set VM , giving the required measurable

equivalence A
Tr∼ B.

Thus, informally speaking, each element n ∈ Au has to find its match

Mu(n) in a measurable way which is also invariant under shifting the whole

coset by any integer vector. For example, a measurable inclusion-maximal

matching M between A and B can be constructed by iteratively applying the
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following over all v ∈ VM : add to the current matching M all possible pairs

(a,a + v), i.e. for all a in the set

X :=
Ä
A \M−1(B)

ä
∩
Ä
(B \M(A))− v

ä
.

Clearly, X is measurable ifM is; thus one iteration preserves the measurability

of M. Also, each of the above iterations can be determined by a “local” rule

within a coset: namely, the match of a vertex n ∈ Au depends only on the

current picture inside the ball of radius M around n (while the new values of

M can be determined in parallel).

Let us formalise the above idea. For r ∈ N, a radius-r local rule (or

simply an r-local rule) is a function R : NQr → N, where Qr := [−r, r]d ⊆ Zd;
it instructs how to transform any function g : Tk → N into another function

gR : Tk → N. Namely, for u ∈ Tk, we define

gR(u) := R(gu|Qr),

where gu : Zd → N is the coset version of g (i.e. gu(n) := g(u +
∑d
j=1 njxj)

for n ∈ Zd) and gu|Qr : Qr → N denotes its restriction to the cube Qr.

Lemma 3.1. If g : Tk → N is a measurable function, then, for any r-local

rule R, the function gR : Tk → N is measurable.

Proof. For any function f : Qr → N define

Xf := {u ∈ Tk : gu|Qr = f}.

Thus u ∈ Xf if and only if g(u +
∑d
j=1 njxj) = f(n) for every n ∈ Qr.

This means that Xf is the intersection, over n ∈ Qr, of the translates of

g−1(f(n)) ⊆ T
k by the vector −∑d

j=1 njxj . Each of these translates is a

measurable set by the measurability of g : Tk → N.

Furthermore, the pre-image of any i ∈ N under gR is the disjoint union of

Xf over f with R(f) = i. This union is measurable as there are only countably

many possible functions f . �

To avoid confusion when we have different graphs on Zd, the distance

between x,y ∈ Zd will always mean the L∞-distance between vectors:

dist(x,y) = ‖x− y‖∞.

Also, we use the standard definition of the distance between sets:

(11) dist(X,Y ) := min{dist(x,y) : x ∈ X, y ∈ Y }, X, Y ⊆ Zd.

For X ⊆ Zk and m ∈ N, we define the m-ball around X to be

dist6m(X) := {n ∈ Zd : dist(n, X) 6 m}.
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A collection X of elements or subsets of Zd is r-sparse if the distance between

any two distinct members of X is strictly larger than r. A set X ⊆ Tk is called

r-sparse if Xu ⊆ Zd is r-sparse for each u ∈ Tk.

Lemma 3.2. For every r there is a Borel measurable map χ : Tk → [t]

for some t ∈ N such that each pre-image χ−1(i) ⊆ Tk, i ∈ [t], is r-sparse.

Proof. The existence of χ follows from the more general results of Kechris,

Solecki and Todorcevic [14].

Alternatively, pick n ∈ N such that 1/n is smaller than the minimum

distance inside the finite set {∑d
j=1 njxj : n ∈ Zd, ‖n‖∞ 6 r } ⊆ Tk. Then

any subset of Tk of diameter at most 1/n is r-sparse. Thus we can take for χ

any function that has the half-open boxes of the (1/n)-regular grid on Tk as

its pre-images (where t = nk). �

For X ⊆ Zd, its boundary ∂X is the set of ordered pairs (m,n) such that

m ∈ X, n ∈ Zd \X and the vector n −m has zero entries except one entry

equal to ±1 (i.e. n−m = ±ej for a standard basis vector ej). The perimeter

of X is p(X) := |∂X|. In other words, the perimeter of X is the number of

edges leaving X in the standard 2d-regular graph on Zd.

We will need a lower bound on the perimeter of a finite set X ⊆ Zd in

terms of its size. While the exact solution to this edge-isoperimetric problem is

known (see Ahlswede and Bezrukov [1, Theorem 2]), we find it more convenient

to use the old result of Loomis and Whitney [23] that gives a bound which is

easy to state and suffices for our purposes.

Lemma 3.3. For every finite X ⊆ Zd we have p(X) > 2d · |X|(d−1)/d.

Proof. A result of Loomis and Whitney [23, Theorem 2] directly implies

that |X|d−1 6
∏d
j=1 |Xj |, where X1, ... , Xd ⊆ Zd−1 are all (d− 1)-dimensional

projections of X. Thus, by the Geometric–Arithmetic Mean Inequality, we

obtain the required:

p(X) > 2
d∑
j=1

|Xj | > 2d

Ñ
d∏
j=1

|Xj |

é1/d

> 2d · |X|(d−1)/d.

�

4. Proof of Part 1 of Theorem 2.2

Throughout this section, measurable means Lebesgue measurable.

4.1. Overview of main ideas and steps. First, let us define some global

constants that will be used for proving Part 1 of Theorem 2.2. Recall that

we are given the measurable sets A,B ⊆ Tk that are Ψ -uniform of density
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δ > 0 with respect to any d − 1 of the vectors x1, ... ,xd ∈ Tk. As we men-

tioned in Remark 2.3, this implies that A and B are Φ-uniform with respect

to x1, ... ,xd ∈ Tk. (Recall that Φ(2i) := 2i · Ψ(2i) for i ∈ N.) It easily follows

(e.g. from Lemma 4.1 below) that λ(A) = λ(B) = δ.

Given A,B, Ψ,x1, ... ,xd, choose a large constant M (namely, it has to

satisfy Lemma 4.2 below). Let (Ni)i∈N be a strictly increasing sequence, con-

sisting of integer powers of 2 such that
∑∞
i=0N

2
i /Ni+1 <∞. When some index

i goes to infinity, we may use asymptotic notation, such as O(1), to denote

constants that do not depend on i.

We will be constructing the desired measurable perfect matching in the

bipartite graph G = (A,B,E) that was defined by (9) by iteratively improv-

ing partial matchings. Namely, each Iteration i replaces the previous partial

measurable matching Mi−1 by a “better” matching Mi using finitely many

local rules. Clearly, the new family (Mi,u)u∈Tk is still equivariant and, by

Lemma 3.1, measurable. We wish to find matchings (Mi)i∈N such that for

a.e. (almost every) a ∈ A the sequence Mi(a) stabilises eventually, that is,

there are n ∈ N and b ∈ B such thatMi(a) = b for all i > n. In this case, we

agree that the final partial map M maps a to b. Equivalently,

(12) M := ∪i∈N ∩∞j=iMj ,

where we view matchings in G = (A,B,E) as subsets of E. Clearly, any family

(Mu)u∈Tk of matchings obtained this way is equivariant and measurable.

In order to guarantee that almost every vertex of A is matched (i.e. that

λ(M−1(B) \A) = 0), it is enough to establish the following two properties:

lim
i→∞

λ
Ä
M−1

i (B)
ä

= λ(A),(13)

∞∑
i=0

λ
Ä
(Mi4Mi+1)−1(B)

ä
<∞,(14)

whereMi4Mi+1 ⊆ E is the symmetric difference ofMi andMi+1, and thus

(Mi4Mi+1)−1(B) is the set of those a ∈ A such that Mi(a) 6= Mi+1(a),

including the cases when only one of these is defined.

Indeed, suppose that (13) and (14) hold. Let A′i consist of those vertices

of A whose match is modified at least once after Iteration i, that is, A′i :=

∪∞j=i(Mj4Mj+1)−1(B). The measure λ(A′i) tends to 0 as i → ∞ because it

is trivially bounded by the corresponding tail of the sum in (14). Thus the set

A′ := ∩∞i=0A
′
i of vertices in A that do not stabilise eventually has measure zero.

Also, for every i ∈ N we have that M−1(B) ⊇ M−1
i (B) \ A′i. If we consider

the measure of these sets and use (13), we conclude that λ(M−1(B)) > λ(A),

giving the required conclusion.

Thus, if we are successful in establishing (13) and (14), this gives an a.e.

defined measurable mapM, which shows that A\A′ and B\B′ are measurably
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equivalent, for some nullsets A′ ⊆ A and B′ ⊆ B. It is not hard to modify

M to get rid of the exceptional sets. Namely, let X ⊆ Tk be the union of all

cosets that intersect A′ ∪ B′. Note that X is a nullset. Let M′ : A → B be

given by Theorem 2.1 using the same vectors x1, ... ,xd. Then, M (resp. M′)
induces a bijection A \ X → B \ X (resp. A ∩ X → B ∩ X) and we can use

M on A \X and M′ on A ∩X. The obtained bijection A→ B is measurable

since M′ is applied only inside the nullset X.

The following trivial observation will be enough in all our forthcoming

estimates of the measure of “bad” sets. We say that a set X ⊆ Tk (or an

equivariant family (Xu)u∈Tk) has uniform density at most c if there is r ∈ N
such that for every u ∈ Tk and for every r-cubeQ ⊆ Zd we have |Xu∩Q| 6 crd.

Lemma 4.1. If a measurable set X ⊆ Tk has uniform density at most c,

then λ(X) 6 c.

Proof. Let r ∈ N witness the stated uniform density. Consider rd trans-

lates X +
∑d
j=1 njxj over n ∈ [r]d. By our assumption, every point of Tk is

covered at most crd times. Thus the lemma follows from the finite additivity

and translation invariance of the Lebesgue measure λ. �

Since our construction of the matching Mi involves “improving” Mi−1

along augmenting paths, let us give the corresponding general definitions now.

Given a matching M in a bipartite graph G = (V1, V2, E), an augmenting

path is a sequence P = (v0, ... , vm) of vertices such that v0 ∈ V1 \M−1(V2),

vm ∈ V2 \M(V1), (vi, vi−1) ∈M for all even i ∈ [m], and (vi−1, vi) ∈ E \M for

all odd i ∈ [m]. In other words, we start with an unmatched vertex of V1 and

alternate between edges in E \M andM until we reach an unmatched vertex

of V2; note that all even (resp. odd) numbered vertices necessarily belong to

the same part and are distinct. The length of P is m, the number of edges in

it; clearly, it has to be odd. If we flip the path P , that is, remove (vi, vi−1)

from M for all even i ∈ [m] and add (vi−1, vi) to M for all odd i ∈ [m], then

we obtain another matching that improves M by covering two extra vertices.

A matching in a finite graph is maximum if it has the largest number of edges

among all matchings.

As we already mentioned, we try to achieve (13) and (14) by iteratively

flipping augmenting paths using some local rules. We have to be careful how

we guide the paths since it is not a priori clear that if two unmatched points

from different parts are close to each other in Gu, then there is a relatively

short augmenting path (or any augmenting path at all).

The following lemma gives us some control over this. A rectangle R ⊆ Zd
is the product of d finite intervals of integers, R =

∏d
j=1[aj , bj ]. Its side lengths
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are bj −aj + 1, j ∈ [d]. We say that R is ρ-balanced if the ratio of any two side

lengths is at most ρ.

Lemma 4.2. Let the assumptions of Part 1 of Theorem 2.2 hold and let

M = M(A,B, Ψ,x1, ... ,xd) be sufficiently large. Take arbitrary u ∈ Tk and a

3-balanced rectangle R ⊆ Zd. If M is a matching in Gu[R,R] (the subgraph of

Gu induced by R, as defined in (7)) that misses at least one vertex in each part,

then Gu[R,R] contains an augmenting path whose length is at most the max-

imum side length of R. In particular, every maximum matching in Gu[R,R]

completely covers one part of the graph.

Surprisingly, this combinatorial lemma (which, as we will see later, re-

lies only on the d-dimensional Φ-uniformity of A and B) is quite difficult

to prove. Although much of work needed for its proof was already done by

Laczkovich [17], a rather long argument is still required to complete it, so we

postpone all details to Section 4.3.

Given Lemma 4.2, another idea that went into the proof is the following.

Given a partition of (Tk)u ∼= Zd into a regular grid of 2j-cubes with a maximum

matching inside each cube, group the cubes 2d apiece so that the new groups

form a 2j+1-regular grid. By Lemma 4.2, the number of unmatched vertices

inside each 2j-cube Q is at most | |Au∩Q|−|Bu∩Q| |, which is at most 2Φ(2j)

by the assumptions of Theorem 2.2. In particular, the uniform density of

unmatched points tends to 0 with j →∞, helping with (13). Inside each new

2j+1-cube Q′, iteratively select and flip an augmenting path of length at most

2j+1 until none exists. By Lemma 4.2, we have a maximum matching inside

Q′ at the end. The total number of changed edges is at most 2j+1 · 2d · 2Φ(2j).

If we iterate over all j ∈ N and sum the density of these changes, we get

(15)
∞∑
j=0

2j+1 · 2d · 2Φ(2j)

(2j+1)d
= 4

∞∑
j=0

Φ(2j)

2(d−1)j
.

The above sum converges by (5), giving a “coset analogue” of the desired

requirement (14).

However, it is impossible to construct a perfect partition of each coset

into cubes of the same side length N > 2 in an equivariant and measurable

way (because the Zd-action on Tk given by the translations by Nx1, ... , Nxd
is ergodic for typical vectors xj). We overcome this issue by fixing, at each

Iteration i, some set Si ⊆ Tk such that the elements of Si,u ⊆ Zd (called seeds)

are far apart from each other. Informally speaking, we view each seed s ∈ Si,u
as a processor that “controls” its Voronoi cell; namely, s draws the regular grid

Qi consisting of Ni-cubes inside its Voronoi cell, treating itself as the centre

of the coordinate system. We obtain what looks as an Ni-regular grid except

possible misalignments near cell boundaries. Also, assume that “most” of Zd
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is already covered by grid-like areas of Ni−1-cubes with each cube containing

a maximum matching that were constructed in the previous iteration step.

Now, each s ∈ Si,u aligns these as close as possible to its Ni-grid and then uses

Lemma 4.2 to do incremental steps as in the previous paragraph, running them

from j = log2Ni−1 to log2Ni − 1 until every Ni-cube that is under control of

s induces a maximum matching. Of course, the possible misalignments of the

grids and boundary issues require extra technical arguments. (This is the part

where we need the (d− 1)-dimensional Ψ -uniformity.)

We hope that the above discussion will be a good guide for understanding

the proof of Part 1 of Theorem 2.2 which we present now.

4.2. Details of the proof. We will use the global constants that were de-

fined at the beginning of Section 4.1.

4.2.1. Constructing the seed set Si. Recall that a set S ⊆ Tk is r-sparse

(given the free vectors x1, ... ,xd) if for every u ∈ Tk and every distinct m,n ∈
Su we have that ‖m− n‖∞ > r.

For each i ∈ N, we construct a Borel set Si ⊆ T
k which is maximal

Ni+2-sparse, that is, Si is Ni+2-sparse but the addition of any new element of

T
k \Si to it violates this property. (The maximality property will be useful in

the proof of Lemma 4.3 as it will guarantee that the diameter of Voronoi cells of

Si,u is uniformly bounded.) Take the Ni+2-sparse map χ : Tk → [t] provided

by Lemma 3.2. We construct Si by starting with the empty set and then,

iteratively for j ∈ [t], adding all those points of χ−1(j) that do not violate the

Ni+2-sparseness with an already existing element. Formally, we let Si,0 := ∅
and

Si,j := Si,j−1 ∪
(
χ−1(j) \ ∪n∈dist6Ni+2

(0)(Si,j−1 + n1x1 + ... + ndxd)
)
,

for j = 1, ... , t. This formula shows, in particular, that the final set Si := Si,t
is Borel. Also, Si is Ni+2-sparse (since each χ−1(j) is) while the maximality of

Si follows from the fact that each element x ∈ Tk was considered for inclusion

into the set Si,χ(x) ⊆ Si.

4.2.2. Constructing grid domains around seeds. Here we construct an equi-

variant family (Qi,u)u∈Tk consisting of disjoint Ni-cubes in Zd that looks as

the Ni-regular grid in a large neighbourhood of each point of Si,u. This con-

struction is similar to the one by Timár [36, 37], except he had to cover the

whole space Zd with parts that could somewhat deviate from being perfect

cubes.

Let u ∈ Tk and s ∈ Si,u. Let the (integer) Voronoi cell of s be

(16) Ci,s,u :=
¶
n ∈ Zd : ∀s′ ∈ Si,u \ {s} ‖n− s‖∞ < ‖n− s′‖∞

©
,

i.e. the set of points in Zd strictly closer to s than to any other element of Si,u.



18  L. GRABOWSKI, A. MÁTHÉ, and O. PIKHURKO

Since each element of Zd is at distance at most Ni+2 from Si,u, we can

“produce” Voronoi cells using some Ni+2-local rule R. (Namely, we want R
to transform the characteristic function of Si into the function whose value on

every u ∈ Tk encodes if there is s ∈ Si,u such that Ci,s,u contains the origin

and, if yes, stores such (unique) vector s.) In particular, the corresponding

structure Ci on Tk is measurable by Lemma 3.1.

Let Qi,u consist of those Ni-cubes Q =
∏d
j=1[aj , aj + Ni − 1] for which

there is s ∈ Si,u such that Q ⊆ Ci,s,u and all coordinates of the vector a − s

are divisible by Ni. Since integer Voronoi cells are disjoint, the constructed

cubes are also disjoint. The following lemma states, in particular, that the set

of vertices missed by these cubes is “small”.

Lemma 4.3. Let m ∈ N be arbitrary and, for u ∈ Tk, let Xu ⊆ Zd be the

set of points at L∞-distance at most m from Z
d\⋃Qi,u. Then the (equivariant)

family (Xu)u∈Tk has uniform density at most O((m+Ni)/Ni+2).

Proof. Fix u ∈ Tk. Let

CRi,s,u :=
¶
x ∈ Rd : ∀s′ ∈ Si,u ‖x− s‖∞ 6 ‖x− s′‖∞

©
,

be the real Voronoi cell of s ∈ Si,u. (The differences to the definition (16)

are that now we consider any real vectors and we also include the boundary

points.)

Take any n ∈ Xu. Let s ∈ Si,u be arbitrary such that the real cube

[0, 1)d + n intersects CRi,s,u. We know that n is at distance at most m from

some n′ ∈ Zd \ ⋃Qi,u. Let Q ⊆ Zd be the (unique) Ni-cube containing n′

that s would have liked to claim (that is, Q =
∏d
j=1[aj , aj +Ni − 1] 3 n′ with

each aj congruent to sj modulo Ni). Since Q does not lie inside the integer

Voronoi cell of s, it has to contain a point n′′ which is not farther from some

s′ ∈ Si,u \{s} than from s. Thus dist(n, Y ) 6 ‖n−n′′‖∞ 6 m+Ni−1, where

Y is the closure of Rd \CRi,s,u. It follows that every element of [0, 1)d +n is at

distance at most m+Ni from Y .

On the other hand, by the Ni+2-spareness of Si,u the distance between

s and Y is larger than Ni+2/2. Thus, if we shrink CRi,s,u by factor γ :=

(Ni+2−2m−2Ni)/Ni+2 from s, i.e. we take the set γ CRi,s,u +(1−γ)s ⊆ CRi,s,u,

then it will be disjoint from [0, 1)d + n. It follows that the set [0, 1)d +Xu :=

∪n∈Xu([0, 1)d + n) can cover at most 1 − γd fraction of the volume of any

Voronoi cell CRi,s,u.

By the maximality of Si,u ⊆ Zd (and since any point of Rd is at distance

at most 1/2 from Z
d), the distance between s ∈ Si,u and any point on the

boundary of CRi,s,u is at most Ni+2 + 1/2. Thus the real Voronoi cells, that

cover the whole space, have a uniformly bounded diameter. It follows that
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there is a constant N (independent of u) such that the density of Xu inside

any N -cube is at most, say, 2(1− γd) = O((m+Ni)/Ni+2), as required. �

4.2.3. Constructing the matchings Mi. Iteratively for i = 0, 1, ... , we will

construct a measurable matchingMi in G (or, equivalently, an equivariant and

measurable family (Mi,u)u∈Tk whereMi,u is a matching in Gu) such that the

following two properties hold for each u ∈ Tk:

(1) every edge of Mi,u lies inside some cube Q ∈ Qi,u (that is, Mi,u ⊆
∪Q∈Qi,uQ

2);

(2) for every cube Q ∈ Qi,u the restriction of Mi,u to Q (more precisely,

to the induced bipartite subgraph Gu[Q,Q]) is a maximum matching.

For i = 0, we constructM0,u by taking a maximum matching inside each

cube Q ∈ Q0,u. In order to make it equivariant and measurable we consistently

use some local rule: for example, take the lexicographically smallest maximum

matching in Q, with respect to the natural labelling of the N0-cube Q by [N0]d.

Let us explain how this can be realised by a local ruleR of radius 2N0+N2.

The rule transforms the function g : Tk → N that encodes the triple of sets

(A,B, S0) into one that encodesM0. Take any a ∈ A. Note that the restriction

of ga to Q′ := [−2N0−N2, 2N0+N2]d determines Aa∩Q′, Ba∩Q′ and S0,a∩Q′.
Since S0,a is maximal N2-sparse, we have that S0,a ∩ [−N2, N2]d 6= ∅. From

the latter set, take a point s which is closest to the origin 0. Let Q ⊆ Zd
be the N0-cube that contains 0 and belongs to the N0-grid centred at s. We

have that Q ∈ Q0,a if and only if every element of Q is closer to s than to

S0,a \ {s}. We see that all elements of S0,a that can “interfere” with Q are

at distance at most N0 + N2 from Q and thus are confined to Q′. Therefore,

the set S0,a ∩ Q′ determines the N0-cube of Q0,a containing 0, if it exists

(which has to be Q then). Suppose that Q ∈ Q0,a. Since Q is a subset of

Q′, we know the intersections of Aa and Ba with Q. Now, among all (finitely

many) maximum matchings in Ga[Aa ∩Q,Ba ∩Q], take the lexicographically

smallest matchingM⊆ Q2. IfM matches 0 ∈ Aa, then the local rule outputs

n := M(0), which tells us that the M0-match of a ∈ A is a +
∑d
i=1 nixi.

(This is an element of B since n ∈ Ba.) Otherwise (namely, if a 6∈ A, or

Q 6∈ Q0,a, orM(0) is undefined) the local rule outputs that a is not matched.

The obtained matchingM0 is measurable by Lemma 3.1, since each of the sets

A,B, S0 ⊆ Tk is measurable. From now on, we may omit details like this.

Let i > 1 and suppose that we have Mi−1 satisfying all above properties.

Let us describe how to construct Mi. We will do this in three steps, produc-

ing intermediate matchings M′i and M′′i . For each step, we also provide an

upper bound on the measure of vertices in A that undergo some change; these

estimates will be later used to argue that (14) holds. So, take any u ∈ Tk.
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LetM′i,u consist of those edges (m,n) ∈Mi−1,u for which there is a cube

Q ∈ Qi,u with m,n ∈ Q. In other words, when we pass from Mi−1 to M′i,
we discard all previous edges that have at least one vertex in X := Tk \⋃Qi
or connect two different cubes of Qi. By Lemma 4.3, the set X has uniform

density at most O(Ni/Ni+2) while, trivially, points within distance M from

the boundary of some Qi,u-cube have uniform density O(1/Ni). Thus, by

Lemma 4.1, when we pass fromMi−1 toM′i, we change the current matching

on a set of measure

(17) λ((Mi−1 4M′i)−1(B)) = O(Ni/Ni+2 + 1/Ni).

Next, let M′′i,u be obtained by modifying M′i,u as follows. For every

cube Q ∈ Qi,u that has at least one vertex that lies outside of
⋃Qi−1,u or

has vertices that come from different integer Voronoi cells of Si−1,u, let the

restriction of M′′i,u to Q be any maximum matching. (Thus we completely

ignore M′i,u inside such cubes Q.) Lemma 4.3 (applied to i− 1 and m = Ni)

shows that the union of such cubes Q has uniform density O(Ni/Ni+1). Thus

by Lemma 4.1, we have that

(18) λ((M′i 4M′′i )−1(B)) = O(Ni/Ni+1).

Finally, we have to show how to obtain the desired matchingMi by mod-

ifying M′′i on the remaining cubes, so that the new matching is maximum

inside each Qi,u-cube. Let Q ∈ Qi,u be one of the remaining cubes. This

means that Q lies entirely inside the Voronoi cell Ci,s,u of some s ∈ Si−1,u and

is completely covered by Ni−1-cubes from Qi−1,u. These cubes when restricted

to Q make a regular grid that, however, need not be properly aligned with the

sides of Q. Take j ∈ [d]. Let Ij ⊆ Z be the projection of Q onto the j-th axis

and let Ij,0∪ ... ∪ Ij,tj be the partition of Ij into consecutive intervals given by

the grid. Each tj is 2h − 1 or 2h, where

h := log2(Ni/Ni−1).

(Since Ni−1 < Ni are powers of 2, h is a positive integer.) If tj = 2h, then

we change the partition of Ij as follows. By reversing the order of the second

index if necessary, assume that |Ij,tj | 6 Ni−1/2 (note that |Ij,0| + |Ij,tj | =

Ni−1), merge Ij,tj into Ij,tj−1 (with the new interval still denoted as Ij,tj−1),

and decrease tj by 1. After we perform this merging for all j with tj = 2h,

the obtained interval partitions induce a new grid on Q that splits it into

2hd rectangles. We call these rectangles basic and naturally index them by

({0, 1}d)h. Namely, for B = (b1, ... , bh) with each bt being a binary sequence of

length d, let RB :=
∏d
j=1 Ij,sj , where sj ∈ [0, 2h−1] is the integer whose base-2

representation has digits (b1,j , ... , bh,j). Furthermore, if (b1, ... , bt) ∈ ({0, 1}d)t
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00,00 00,10 10,00 10,10

00,01 00,11 10,01 10,11

01,00 01,10 11,00 11,10

11,1111,0101,1101,01

R R
(00) (10)

(01)
R

(11)
R

Figure 2. i) Cube Q and Qi−1,u-grid; ii) basic rectangles;

iii) level-1 rectangles

with t < h, then we define

R(b1, ... ,bt) := ∪(bt+1, ... ,bh)∈({0,1}d)h−t R(b1, ... ,bh)

to be the union of those basic rectangles whose index sequence has (b1, ... , bt)

as a prefix. Thus, the largest (or level-0) rectangle is R( ) = Q, which splits

into 2d level-1 rectangles as R( ) = ∪b∈{0,1}dR(b), each of which splits further as

R(b) = ∪a∈{0,1}d R(b,a), and so on until we get the basic rectangles at level h.

See Figure 2 for an illustration with d = h = 2.

Note that, for each j ∈ [0, h], a level-j rectangle has side lengths between

2h−jNi−1±Ni−1/2; in particular it is 3-balanced. Also,M′′i,u ⊆Mi−1,u cannot

connect two different basic rectangles. SinceM′′i,u ∩Q2 =Mi−1,u ∩Q2, it is a

maximum matching on every basic rectangle which is an element of Qi−1,u.

We are now ready to describe how we modify M′′i,u on Q. First, put an

arbitrary maximum matching on every basic rectangle not in Qi−1,u. (For

example, in Figure 2.ii these happen to be all 12 rectangles at the boundary

of Q.) This involves at most 2Ni−1 ·dNd−1
i elements of Q and thus has uniform

density at most O(Ni−1/Ni). Next, we iteratively repeat the following for

` = h, ... , 1. Suppose that the current matching is maximum when restricted

to each level-` rectangle (i.e. to each R(b1, ... ,b`)) and does not connect two

such rectangles. (Note that this is the case at the initial step ` = h.) Inside

each level-(`− 1) rectangle R, iteratively augment the current matching using

paths of length at most (2h−`+1 + 1/2)Ni−1 until none remains. Clearly, each

augmentation increases the size of the matching inside the finite set R, so we

run out of augmenting paths after finitely many flips. By Lemma 4.2, the

final matching in Gu[R,R] covers all vertices in one part. In particular, it is

maximum (and we can proceed with the next value of `).

Note that the number of unmatched vertices in any level-(`− 1) rectangle

RB, B ∈ ({0, 1}d)`−1, before Iteration ` was at most
∑

b∈{0,1}d D(R(B,b)),
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where

(19) D(Y ) :=
∣∣∣ |Au ∩ Y | − |Bu ∩ Y |

∣∣∣
denotes the (Au, Bu)-discrepancy of a finite set Y ⊆ Zd. (This holds because,

again by Lemma 4.2, a maximum matching inside R(B,b) for each b ∈ {0, 1}d
has to match one part completely.) Thus, when we pass from M′′i to Mi, the

density of changes inside Q caused by augmenting paths is at most

(20)
1

|Q|

h∑
`=1

O(Ni/2
`)

∑
B∈({0,1}d)`

D(RB).

Call a level-` rectangle R special if at least two of its side lengths are

different from Ni/2
`. (For example, in Figure 2.ii the special rectangles happen

to be all four corner rectangles.)

The (Au, Bu)-discrepancy of a non-special level-` rectangle R can be

bounded by decomposing it into (d − 1)-dimensional Ni/2
`-cubes and using

the Ψ -uniformity of both Au and Bu:

D(R) 6 2Ψ(Ni/2
`)

|R|
(Ni/2`)d−1

.

Thus such rectangles contribute O(Ψ(Ni/2
`)/(Ni/2

`)d−2) to (20).

We bound the (Au, Bu)-discrepancy of a special level-` rectangle R using

the following argument with N := Ni/2
` and n := Ni−1/2. For notational

convenience, assume that R =
∏d
j=1[rj ] (thus |rj − N | 6 n for each j ∈ [d])

and that rj > N exactly for j ∈ [t]. For j ∈ [t] (resp. j ∈ [t + 1, d]) let Rj
be the rectangle which is the product of d copies of [N ] except the j-th factor

is [N + 1, rj ] (resp. [rj + 1, N ]). We can transform [N ]d into R by adding

the rectangles R1, ... , Rt, then subtracting Rt+1, ... , Rd, and finally adjusting

those vertex multiplicities that are still wrong. The last step involves at most(d
2

)
n2Nd−2 vertices of R and each multiplicity has to be adjusted by at most d.

Thus we have the following Bonferroni-type inequality:

D(R) 6 D([N ]d) +
d∑
j=1

D(Rj) + d

Ç
d

2

å
n2Nd−2 = O(N Ψ(N) + n2Nd−2).

Also, the total number of special rectangles at level ` is at most O(2`(d−2)).

Indeed, we have at most 4
(d
2

)
ways to choose a “(d − 2)-dimensional face” F

of Q, and then observe that F intersects at most 2`(d−2) level-` rectangles

(while each special rectangle must have a non-empty footprint in at least one

(d− 2)-dimensional face of Q).

Thus, special level-` rectangles contribute O
Ä
4−` Ψ(Ni/2

`)/(Ni/2
`)d−2 +

2−`N2
i−1/Ni

ä
to (20).
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Putting all together and using Lemma 4.1, we get the following upper

bound on the measure of points where M′′i and Mi differ:

(21) λ((M′′i4Mi)
−1(B)) = O(N2

i−1/Ni) +O(1)
h∑
`=1

Ψ(Ni/2
`)

(Ni/2`)d−2
.

Having constructedMi, we increase i by one and repeat the above proce-

dure. It remains to show that the constructed sequence of measurable match-

ings (Mi)i∈N has the required properties.

Observe that each upper bound in (17), (18), and (21) is a summable

function of i ∈ N. This directly follows from our choice of the sequence (Ni)i∈N,

with the exception of the second term in the right-hand side of (21). Here,

if we sum these terms over i ∈ N, then each integer power 2j can appear

as Ni/2
` at most once (indeed, i ∈ N has to be the unique index such that

Ni−1 6 2j < Ni); thus the resulting sum converges by (5). Now (14) follows,

since

Mi−1 4Mi ⊆ (Mi−1 4M′i) ∪ (M′i 4M′′i ) ∪ (M′′i 4Mi).

Since Mi,u covers all but at most D(Q) 6 2Φ(Ni) vertices inside each

cube in Qi,u while the set of vertices not covered by Qi has uniform density

O(Ni/Ni+2) by Lemma 4.3, the set A \M−1
i (B) has uniform density at most

O(Φ(Ni)/N
d
i + Ni/Ni+2). Clearly, this tends to zero as i → ∞. Thus, by

Lemma 4.1, the other desired estimate (13) also holds.

The proof of Part 1 of Theorem 2.2 can now be completed, as it was

described after (14).

4.3. Proof of Lemma 4.2. This section is dedicated to proving Lemma 4.2

that was needed in the proof of Part 1 of Theorem 2.2. Note that Lemma 4.2

is a combinatorial statement that does not involve any notion of equivariance

or measurability.

For X,R ⊆ Zd, define the internal boundary of X relative to R to be

∂RX := (∂X) ∩R2 = {(m,n) ∈ R2 : m ∈ X, n 6∈ X}

and the internal perimeter of X relative to R to be pR(X) := |∂RX|. Recall

that a rectangle R ⊆ Zd is called ρ-balanced if the ratio of any its two side

lengths is at most ρ.

Our next lemma states that a positive fraction of the boundary of a set X

lying inside a ρ-balanced rectangle R is internal, unless X occupies most of R.

Lemma 4.4. For every R,X ⊆ Zd, where X ⊆ R and R is a ρ-balanced

rectangle, we have that

pR(X) >
p(X)

3dρ
· |R \X|
|R|

.
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Proof. Let γ := dρ/2+2d+1, which is at most 3dρ since d > 2 and ρ > 1.

We can assume that pR(X) < p(X)/γ for otherwise we are trivially done. Let

j ∈ [d] be such that at least 1/d-fraction of the common boundary ∂X ∩ ∂R
goes in the j-th coordinate direction. Thus the number of lines parallel to the

j-th coordinate axis that intersect X is at least half of this quantity. Trivially,

at most pR(X) of these lines can intersect R\X while every other line contains

rj points from X, where r1, ... , rd are the side lengths of R. Thus

(22) |X| > rj
Ç
p(X)− pR(X)

2d
− pR(X)

å
>
rj(γ − 2d− 1)

2dγ
p(X).

For every pair (a, b) ∈ X × (R \X) consider the path inside R which is

the union of the d “straight-line” paths that connect the following d+ 1 points

in the stated order:

a = (a1, ... , ad), (b1, a2, ... , ad), (b1, b2, a3, ... , ad), ... , b = (b1, ... , bd).

Each such path contains at least one pair from ∂RX. Conversely, every (or-

dered) pair in the internal boundary of X going, for example, in the i-th

direction is in at most (r2
i /4)

∏
h∈[d]\{i} rh = (ri/4)|R| such paths. Denoting

r := max{ri : i ∈ [d]} and using (22), we conclude that

pR(X) >
|X| · |R \X|

(r/4) |R|
>

2(γ − 2d− 1)p(X)

dργ
· |R \X|
|R|

.

Using that γ 6 3dρ satisfies 2(γ − 2d − 1) = dρ, we obtain the required

bound. �

For a real δ > 0 and sets X,R ⊆ Zd such that R is finite, let the discrep-

ancy of X relative to R of density δ be

Dδ(X;R) :=
∣∣∣ |X ∩R| − δ |R| ∣∣∣.

Thus, a set X ⊆ Zd is Φ-uniform of density δ if and only if Dδ(X;Q) 6 Φ(2i)

for every 2i-cube Q ⊆ Zd.
Clearly, Lemma 4.2 follows from Part 2 of the following result when applied

to A := Au and B := Bu, assuming that M satisfies Lemma 4.5 for ρ := 3

(with d ∈ N, δ > 0, and Φ(2i) = 2iΨ(2i) being as in Theorem 2.2).

Lemma 4.5. For every integer d > 1, reals δ > 0 and ρ > 1, and a

function Φ : {2i : i ∈ N} → R satisfying
∑∞
i=0 Φ(2i)/2(d−1)i < ∞, there is a

constant M = M(d, δ, ρ, Φ) such that the following holds for every ρ-balanced

rectangle R :=
∏d
j=1[aj , aj+rj−1] ⊆ Zd and sets A,B ⊆ Zd that are Φ-uniform

of density δ > 0.

If N := max(r1, ... , rd) is the maximum side length of R and

F := (A ∩R,B ∩R,E)
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is the bipartite graph with edge set E := {(m,n) ∈ (A ∩ R) × (B ∩ R) :

‖m− n‖∞ 6M}, then

(1) for every X ⊆ A ∩R, we have

|E(X)| > min

Ç
|X|+ 10 d · |X|(d−1)/d,

|B ∩R|
2

å
,

where E(X) = {y : ∃x ∈ X (x, y) ∈ E} is the neighbourhood of X

in F ;

(2) for every matching M in F that leaves unmatched elements in both

parts, there is an augmenting path of length at most N .

Proof. Given d, δ, ρ, and Φ, choose sufficiently large integers in the order

M0 �M1 �M .

Since
∑∞
i=0 Φ(2i)/2(d−1)i <∞, Theorem 1.2 in Laczkovich [17] shows that,

for every X ⊆ Zd which is Φ-uniform of density δ, we have

(23) Dδ(X;Y ) 6M0 p(Y ), for all finite Y ⊆ Zd.

Note that the coefficient M0 = M0(d, δ, ρ, Φ) in (23) does not depend on the

choice of X and Y . (The proof of (23) in [17] proceeds by representing each

Y as a certain combination of binary cubes having the appropriately defined

“complexity” at most M0 p(Y ).)

Next, take arbitrary A,B, R ⊆ Z
d as in the statement of the lemma.

Assume that N > M for otherwise F is a complete bipartite graph and the

lemma trivially holds.

We prove Part 1 of the lemma first. Fix an arbitrary set X ⊆ A ∩R with

2 |E(X)| < |B ∩R|.
Very roughly, the proof proceeds as follows. We define some “smoothed”

versions X1 and X2 of X, where for illustration purposes one can imagine Xi

as dist6iM1(X) ⊆ Zd, the (iM1)-ball around X. Then every point of B∩X2 is

a neighbour of X. Also, if the boundaries of X1 and X2 are “smooth on the

scale of M1”, then we expect that |X2 \ X1| > Ω
Ä
M1(p(X1) + p(X2))

ä
. On

the other hand, by (23) the number of points from A and B inside Xi deviates

from the expected value δ|Xi| by at most M0 p(Xi) which is much smaller

than M1 p(Xi). This suffices to get the desired gap between |E(X)| > |B∩X2|
and |X| 6 |A ∩ X1|. The above argument is from Laczkovich [17]. However,

here we have to confine all sets to R (even ifX comes very close to the boundary

of R). With an appropriate definition of Xi, the above argument can be applied

if |Xi| < 2
3 |R| as then Xi has a positive fraction of its boundary in the interior

of R by Lemma 4.4. Otherwise there is a large discord between |Xi| > 2
3 |R|

and |B ∩ Xi| 6 |E(X)| < |B ∩ R|/2, implying that p(Xi) = Ω(Nd); thus

pR(Xi) > p(Xi) − p(R) = p(Xi) − O(Nd−1) is essentially the same as p(Xi)

and the above argument still applies. Let us give all details now.
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For each j ∈ [d], fix a partition [aj , aj + rj − 1] = ∪tji=1Ij,i of the j-th side

of R into intervals of length M1 and M1 + 1. (For example, take rj (mod M1)

intervals of length M1 + 1 that occupy at most (M1 − 1)(M1 + 1) 6M/ρ 6 rj
initial elements and split the rest into intervals of length M1.) Call each d-

dimensional product
∏d
j=1 Ij,sj with s ∈ ∏d

j=1[tj ] a sub-rectangle. Thus we

have partitioned R into an (almost regular) grid made of sub-rectangles. We

say that two sets Y,Z ⊆ Zd share boundary if there is (m,n) ∈ ∂Y such that

(n,m) ∈ ∂Z. By the grid structure, each sub-rectangle can share boundary

with at most 2d other sub-rectangles.

Let X1 be the union of all sub-rectangles that intersect X. Let X2 be

obtained from X1 by adding all sub-rectangles that share boundary with it.

Clearly,

X ⊆ X1 ⊆ X2 ⊆ R.

By Lemma 3.3, we have that p(X2) > 2d · |X2|(d−1)/d > 2d · |X|(d−1)/d. Thus,

in order to prove the first part of the lemma, it is enough to show that

(24) |E(X)| > |X|+ 5 p(X2).

First, let us show that

(25) |X2 \X1| >
M1

2d

Ä
pR(X1) + pR(X2)

ä
.

Note that if (n,n+e) is in ∂RX1 (resp. ∂R(R\X2)), then n+ie ∈ X2\X1 for all

i ∈ [M1]. (Indeed, the directed edge (n,n+e) enters some sub-rectangle R′ ⊆
X2\X1 and it takes at least M1 steps in that direction before we leave R′.) This

way we encounter at least M1 p
R(X1) (resp. M1 p

R(X2)) elements in X2 \X1

with each element counted at most 2d times in total, which gives (25).

Since we may assume that 2(M1 + 1) 6 M , each element of X2 is within

distance M from X; thus E(X) ⊇ B∩X2. Also, by the construction of X1, we

have X ⊆ A ∩X1. We conclude by (23) and (25) that

|E(X)| − |X|> |B ∩X2| − |A ∩X1|
> δ |X2 \X1| −M0

Ä
p(X1) + p(X2)

ä
(26)

>
δM1

2d

Ä
pR(X1) + pR(X2)

ä
−M0

Ä
p(X1) + p(X2)

ä
.

Let i = 1 or 2. Let us show that pR(Xi) > p(Xi)/M0. This directly

follows from Lemma 4.4 if |Xi| 6 2
3 |R| since we can assume that M0 > 9dρ.

So suppose that |Xi| > 2
3 |R|. Since B ∩Xi ⊆ E(X) has, by our assumption,

less than |B ∩ R|/2 elements, we have by (23) applied twice to the Φ-uniform
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set B that

M0 p(Xi)> δ|Xi| − |B ∩Xi| >
2δ|R|

3
− |B ∩R|

2

>
2δ|R|

3
− δ|R|+M0 p(R)

2
=

δ|R|
6
− M0 p(R)

2
.

Since |R| > (N/ρ)d and p(R) 6 2dNd−1 (and N > M � M0), we conclude

that

pR(Xi) > p(Xi)− p(R) > p(Xi)/2,

which is even stronger than claimed.

Now, by (26) and since M1 �M0, we obtain the required bound (24):

|E(X)| − |X| >
Å
δM1

2dM0
−M0

ã Ä
p(X1) + p(X2)

ä
> 5 p(X2).

This finishes the proof of Part 1.

Now, we prove the second part of the lemma, assuming the validity of

Part 1.

Let A0 6= ∅ consist of the unmatched points in A∩R. Define an alternating

path as a sequence (x0, ... , x`) such that x0 ∈ A0, (xi−1, xi) ∈ E \M for all odd

i ∈ [`] and (xi, xi−1) ∈ M for all even i ∈ [`] (i.e. it is a path in F that starts

with an unmatched vertex of A ∩ R and alternates between unmatched and

matched edges). Note that any alternating path that ends in an unmatched

vertex is augmenting. For i ∈ N, let Ai be the set of endpoints of alternating

paths whose length is at most i and has the same parity as i. (Thus Ai ⊆ A∩R
for even i and Ai ⊆ B∩R for odd i.) Let A′i consist of vertices reachable by an

alternating path of length i but not by a shorter one (that is, A′i := Ai \ Ai−2

for i > 2 and A′i := Ai for i = 0, 1).

Suppose on the contrary that there is no augmenting path of length at

most N . Take an odd integer ` such that N − 3 6 2`+ 1 6 N .

Roughly, the proof proceeds as follows. It is easy to see that A2i+1 =

E(A2i) for all i ∈ N and the absence of short augmenting paths implies that

M covers all of A2i+1 for i 6 `. It follows from Part 1 that |Ai| grows as

Ω(id). By symmetry, the same applies when we grow alternating paths starting

from B. These two processes have to collide in fewer than N/2 steps, giving a

contradiction. Let us provide the details now.

Clearly, if i 6 `, then A′2i+1 ⊆ M(A) (i.e. every vertex of A′2i+1 ⊆ B ∩ R
is matched) for otherwise we have a too short augmenting path. Furthermore,

A′2i+2 =M−1(A′2i+1) (i.e. M gives a bijection from A′2i+2 to A′2i+1). Thus, by

induction on i, we have that

(27) |A2i+2| = |A2i+1|+ |A0|, for every i 6 `.
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Next, let us show that

(28) |A`| > |B ∩R|/2.

We may assume that |Ai| < |B∩R|/2 for all odd i 6 `, as otherwise we are

done since A` ⊇ Ai. Take any integer i ∈ [0, (` − 1)/2]. Since A2i+1 ⊇ E(A2i)

(in fact, this is equality), we have by Part 1 of the lemma that

|A2i+1| > |E(A2i)| > |A2i|+ 10 d · |A2i|(d−1)/d.

If i > 1, then (27) implies that |A2i| > |A2i−1|. Thus the sizes ai := |A2i−1|
satisfy a1 > 1 and

(29) ai+1 > ai + 10 d · a(d−1)/d
i , for all i ∈ [(`− 1)/2].

Let an integer γ = γ(d) be such that γj−1 > 5j−1
(d
j

)
for all j ∈ [2, d]; for

example, we can take γ = 5 · 2d. We obtain that ai+1 > ai + 1 and, if ai > cd

with c > γ then we have by (29)

ai+1 > c
d+ 10 d · cd−1 > cd+ 5 d · cd−1 +

d∑
j=2

5 cd−1 >
d∑
j=0

Ç
d

j

å
5j cd−j = (c+ 5)d.

We conclude by induction on i that ai+γd > (5 i + γ)d for every i ∈
[0, (`−1)/2−γd]. But then ai is larger than Nd > |R| for some i 6 N/5+γd 6
(`− 1)/2. (Recall that d�M < N 6 2`+ 4.) This contradiction proves (28).

Likewise, by swapping the role of the sets A and B in the previous argument

(and extending the definition of an alternating path accordingly), let Bi consist

of vertices reachable by alternating paths that start in an unmatched vertex

of B ∩R and whose length is at most i and of the same parity as i. As above,

we conclude that |B`| > |A ∩ R|/2. Assume without loss of generality that

|B ∩R| > |A ∩R|. By (27) and (28), we have that

|A`+1| = |A`|+ |A0| > |A`| > |B ∩R|/2 > |A ∩R|/2.

Thus B`, which occupies at least half of A ∩R, intersects A`+1.

Take two alternating paths P := (x0, ... , xs) and P ′ := (y0, ... , yt) such

that x0 ∈ A, y0 ∈ B, xs = yt, and s+t is smallest possible; if there is more than

one choice, let s be maximum. Clearly, s+ t is odd and, by above, it is at most

2`+ 1 6 N . Thus we cannot have t = 0 for otherwise P is a short augmenting

path contradicting our assumption. Since s was maximum, we cannot append

yt−1 to P and still have an alternating path. By the parity of s + t, the only

possible reason is that yt−1 is equal to some xj with s − j being a positive

odd integer. But then (x0, ... , xj) and (y0, ... , yt−1) are alternating paths that

contradict the choice of the pair (P, P ′), namely, the minimality of s+ t. This

final contradiction proves Lemma 4.5. �
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5. Proof of Part 2 of Theorem 2.2

In this section, let measurable mean Baire measurable.

Given the function Φ : {2i : i ∈ N} → R, the vectors x1, ... ,xd ∈ Tk, and

the sets A,B ⊆ Tk as in Part 2 of Theorem 2.2, let M be sufficiently large

and then let r1 < r2 < ... be a fast-growing sequence of integers. (Namely,

for each i, the constant M and the subsequence (r1, ... , ri) have to satisfy

Lemma 5.2.)

Given our choice of M , consider the usual bipartite graph G = (A,B,E)

as defined in (9); namely, E = {(a, b) ∈ A×B : a− b ∈ VM}. Thus we would

like to find a measurable perfect matching M in G. We will use essentially

the same construction that appears in Marks and Unger [26]. However, the

analysis of its correctness for our problem is much more complicated.

Recall that a set X ⊆ Tk is called r-sparse if no Xu contains two distinct

vectors at L∞-distance at most r. For every integer i > 1, choose Baire sets

Ai ⊆ A and Bi ⊆ B such that Ai ∩ Bi = ∅, Ai ∪ Bi is (ri + 4M)-sparse and

the sets A′ := A \ (∪∞i=1Ai) and B′ := B \ (∪∞i=1Ai) are meagre. For notational

convenience, let us further agree that A2i+1 = B2i = ∅ for all i ∈ N, which

will automatically take care of the disjointedness requirement. The existence

of such sets is easy to establish. For example, let {yi : i ∈ N} be a dense

subset of Tk and let A2i (resp. B2i+1) be the intersection of A (resp. B) with

a ball centred at yi of sufficiently small radius (namely, so that the ball is

(r2i+1 + 4M)-sparse). The closure of A′∪B′ cannot contain a non-empty open

set U because it avoids a ball around some yi ∈ U . Thus A′ ∪ B′ is in fact

nowhere dense.

In order to prove Theorem 2.2, it is enough to find measurable nested

matchings M1 ⊆M2 ⊆ ... such that for all i > 1 we have

(30) M−1
i (B) ⊇ Ai and Mi(A) ⊇ Bi.

Indeed, suppose that such matchings Mi exist. Let M := ∪∞i=1Mi. Let X ⊆
T
k consist of the translates of the meagre set A′ ∪B′ by integer combinations

of x1, ... ,xd. Then X is a meagre invariant set and the restriction of M to

G[A \X,B \X ] is a perfect matching by (30). If we replace the restriction of

the injectionM : A→ B to A∩X by the one provided by Theorem 2.1 (with

respect to the same vectors x1, ... ,xd), then we obtain the required measurable

perfect matching in G.

The following lemma is a special case of the inductive step in Marks and

Unger [26], slightly adopted to our purposes. A matching M in a graph G

is called G-extendable (or extendable when G is understood) if G has a (not

necessarily measurable) perfect matching M′ ⊇M.
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Lemma 5.1. Under the assumptions of this section, for every i > 1 and

every measurable G-extendable matchingMi−1, there is a measurable matching

Mi ⊇Mi−1 satisfying (30) and the following properties.

(1) The added edge-set is (ri + 2M)-sparse, that is, for every u ∈ Tk and

distinct (a, b), (x,y) ∈ (Mi \ Mi−1)u, the distance between the sets

{a, b} and {x,y} (as defined in (11)) is larger than ri + 2M .

(2) Mi \Mi−1 ⊆ M≡i−1, where M≡i−1 consists of those (a, b) ∈ E \Mi−1

such that Mi−1 ∪ {(a, b)} is a G-extendable matching.

Proof. By the symmetry between A and B, assume that, for example, i is

even. Since Bi = ∅, we just need to match every vertex of X := Ai \M−1
i−1(B)

in order to satisfy (30). By the measurability of Mi−1, the set X ⊆ Tk is

Baire.

For x ∈ X, let Y (x) := {y ∈ E(x) : (x,y) ∈ M≡i−1} consist of those

neighbours y of x for which Mi−1 ∪ {(x,y)} is an extendable matching. This

set is non-empty by the assumed extendability of Mi−1. Furthermore, for

j ∈ N, let Yj(x) consist of those y ∈ E(x) such that Mi−1 ∪ {(x,y)} can

be extended to a matching that covers all vertices of G (in both parts) at the

coset distance at most j from x; namely we require that Gx has a matching

M⊇Mi−1,x such that

(31) M(Ax) ⊇ dist6j(0) ∩Bx and M−1(Bx) ⊇ dist6j(0) ∩Ax.

Clearly, Y (x) ⊆ ∩j∈NYj(x). The converse inclusion holds by the Compactness

Principle (or a direct diagonalisation argument) applied to the locally finite

graph Gx. Thus Y (x) = ∩j∈NYj(x).

Fix some Borel map χ : Tk → [t] with 2M -sparse pre-images provided by

Lemma 3.2. Let Mi be obtained from Mi−1 by adding, for each x ∈ X, the

pair (x,y), where y is the element of Y (x) 6= ∅ with the smallest value of χ.

Since X ⊆ Ai is (ri + 4M)-sparse, Mi satisfies Part 1 (in particular, Mi is a

matching). Clearly, Part 2 and (30) hold by the definition of Mi.

Thus it remains to verify the measurability ofMi. To this end, it is enough

to prove that for every v ∈ VM the set Zv := {x ∈ X : (x,x+v) ∈Mi\Mi−1}
is measurable. Trivially, Zv is the union over m ∈ [t] of

Zv,m := {x ∈ Zv : χ(x + v) = m}.

We prove by induction on m = 1, ... , t that, for each v ∈ VM , the set Zv,m

is measurable (which will finish the proof of the lemma). For the base case, note

that Zv,1 consists exactly of those x in the translated Borel set χ−1(1)−v such

that for every radius j there exists M ⊇ Mi−1,x satisfying (31). The latter

property, for any given j, is clearly determined by the picture inside the ball

dist6j+M (0) in the coset of x and can be checked by a (j + M)-local rule.

Thus each Zv,1 is measurable by Lemma 3.1. The measurability of Zv,m for
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m > 2 follows by induction: the formula for Zv,m is the trivial adaptation of

that for Zv,1 except we additionally have to exclude ∪m−1
q=1 ∪w∈VM Zw,q, the

set of vertices x ∈ X for which Y (x) has an element whose χ-value is smaller

than m. (We do not need to worry that the matches of X in B may collide as

they are automatically distinct by the 2M -sparseness of X.) �

Armed with Lemma 5.1, we can now describe how we construct the desired

matchings. We start with the empty matching M0 (which is G-extendable by

Theorem 2.1) and try to iteratively apply Lemma 5.1 for i = 1, 2, ... , construct-

ing nested measurable matchings M1 ⊆ M2 ⊆ ... in G that satisfy (30). If

each new matching Mi is extendable, then Lemma 5.1 can always be applied,

giving the proof of Theorem 2.2 as discussed above.

The extendability of each Mi directly follows from Lemma 5.2 below

(when applied to the Φ-uniform sets A := Au and B := Bu for each u ∈ Tk)
since, clearly, it is enough to verify extendability inside each coset. Lemma 5.2

(like Lemma 4.5) is a purely combinatorial statement with a rather long proof.

Lemma 5.2. For every integer d > 1, real δ > 0, and function Φ :

{2i : i ∈ N} → R satisfying
∑∞
i=0 Φ(2i)/2(d−1)i < ∞, there is M = M(d, δ, Φ)

such that the following holds.

Let A,B ⊆ Zd be Φ-uniform sets of density δ > 0. Let positive integers

r1 6 ... 6 ri satisfy

(32)
i∑

j=1

(M/rj)
(d−1)/d 6 41−d.

Let M0 := ∅ ⊆ M1 ⊆ ... ⊆Mi be matchings in the bipartite graph

F :=
Ä
A,B, {(a, b) ∈ A× B : ‖a− b‖∞ 6M}

ä
such that Nj := Mj \ Mj−1 is (rj + 2M)-sparse for each j ∈ [i], Mi 6= ∅,
and Mi−1 ∪ {(a, b)} is F-extendable for every (a, b) ∈ Mi. Then Mi is F-

extendable.

Proof. Given d, δ, and Φ as above, let M0 �M be sufficiently large inte-

gers. For convenience, assume that M is a power of 2. By our assumption on Φ,

we can also require that Φ(M/2) < δ(M/2)d. As in the proof of Lemma 4.5,

assume that M0 satisfies (23).

For ` ∈ N and X ⊆ Z
d, we say that y, z ∈ Zd are (`,X)-connected

if we can find a (possibly empty) sequence x1, ... ,xn of elements of X such

that, letting x0 := y and xn+1 := z, we have that dist(xj−1,xj) 6 ` for all

j ∈ [n + 1]. In other words, we can travel from y to z via X using `-jumps

(i.e. steps of L∞-distance at most `). The set X is `-connected if every x,x′ ∈
X are (`,X)-connected. The binary relation of being (`,X)-connected when

restricted to X is clearly an equivalence relation. Its equivalence classes will
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be called `-components of X. Equivalently, an `-component is just a maximal

`-connected subset of X.

For j ∈ [0, i], we let Aj := A \M−1
j (B) and Bj := B \Mj(A); also, for a

subset Y of Aj or Bj , let Γj(Y ) denote the set of its neighbours with respect

to the induced bipartite subgraph

Fj := F [Aj , Bj ] =
Ä
Aj , Bj , {(a, b) ∈ Aj × Bj : ‖a− b‖∞ 6M}

ä
,

which is obtained from F by removing the vertices matched by Mj .

Clearly, the matching Mi is F-extendable if and only if Fi has a perfect

matching. Since Fi is locally finite, Rado’s theorem [30] applies. Hence, it is

enough to show that (8) holds for Fi.
Since 2M -components of any set are at distance larger than 2M from each

other, their neighbourhoods in Fi are disjoint; thus it is enough to prove that

(33) |Γi(X)| > |X|, for every finite 2M -connected X ⊆ Ai or Bi.

So take an arbitrary non-empty finite 2M -connected set X in one part, say

X ⊆ Ai.

Given X, let its reference point be the vector o(X) ∈ Zd whose j-th

coordinate for j ∈ [d] is the minimum of the j-th coordinate projection Prj :

X → Z. Partition Zd into the (M/2)-regular grid Q with o(X) as the origin.

Let X1 ⊆ Zd be the union of all cubes in Q that intersect X and let X2 ⊇ X1

be obtained from X1 by adding cubes from Q that share boundary with X1.

This definition is a special case of the one in the proof of Lemma 4.5 if we

let M1 := M/2 and take a rectangle R ⊇ dist6M+1(X) aligned with the M1-

regular grid centred at o(X). In particular, the proof of (26) from Lemma 4.5

applies verbatim to the current definitions of X1 and X2 (with pR(Y ) = p(Y )

for Y ⊆ X2) and gives that, for example,

(34) |Γ0(X)| − |X| > |B ∩X2| − |A ∩X1| > p(X1).

By a hole (of X) we will mean a 2M -component of Zd \ X1. In other

words, two vertices of Zd \X1 are in the same hole if and only if one can travel

from one to the other in 2M -jumps staying all the time in Zd \X1. Let H(X)

be the set of all holes of X, including the (unique) infinite one, which we denote

by H∞. Note that the boundary of X1 is the disjoint union of the (reversed)

boundaries of the holes. Call a hole H ∈ H(X) rich if p(H) > (ri/M)(d−1)/d.

Rather roughly, the main ideas behind the proof are as follows. If no edge

of Ni is within distance M from X, then Γi(X) = Γi−1(X) and (33) holds

sinceMi−1 is extendable by the assumption of the lemma. If there is only one

(a, b) ∈ Ni close to X, then (33) still holds becauseMi near X is the same as

the extendable matchingMi−1 ∪ {(a, b)}. Thus a problem can only arise if at

least two edges of Ni are M -close to X. The (ri+2M)-sparseness of Ni and the

2M -connectivity of X imply that |X| > ri/2M . Thus these assumptions (that
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follow from the construction of Lemma 5.1) automatically take care of (33)

when the set X is “small”. This simple and yet beautiful idea is from Marks

and Unger [26]. It worked well in their setting when their initial assumption

was that |Γ0(X)| > (1+ε)|X| for some absolute constant ε > 0. Our graph F0

does not have such strong expansion property (since the group of translations

is amenable) but it satisfies (34). When we pass to Fi by removing the sparse

matchings N1, ... ,Ni from F0, only those removed edges that are near to ∂X1

can decrease the value of |Γi(X)| − |X| when compared to |Γ0(X)| − |X|. If

H ∈ H(X) is a hole, then we expect that at most O(p(H)/rj + 1) edges of Nj
can come near ∂H for each j ∈ [i]. Thus, the “loss” from the hole should be at

most
∑i
j=1O(p(H)/rj + 1). This is smaller than p(H), the hole’s contribution

to p(X1), if p(H) is sufficiently large. Thus, rich holes should only help us. So,

the remaining problematic case is when |X| is relatively large but contain at

least one hole H which is not rich. Here we take non-rich finite holes H ∈ H(X)

one by one. For each such H, we “fill” it up; namely, we decrease the matchings

to avoid H and enlarge X so that H disappears from H(X). As we will see,

this operation does not increase |Γi(X)| − |X|. By iterating it, we can get rid

of all non-rich finite holes. Now, if we can prove (33) for the final set, then the

original set X also satisfies this inequality.

Let us provide the details of the proof.

Case 1 At most one edge (a, b) ofNi =Mi\Mi−1 satisfies dist({a, b}, X) 6M .

Suppose that such an edge (a, b) exists, for otherwise Γi(X) = Γi−1(X) has at

least |X| vertices (sinceMi−1 is F-extendable), as required. LetM∞ be some

perfect matching of F0 = F that extendsMi−1∪{(a, b)}. The matchingM∞
gives an injection from X to Γi−1(X) \ {b} ⊆ Γi(X). (Note that a ∈M−1

i (B)

cannot belong to X ⊆ Ai.) Thus (33) holds.

Case 2 We are not in Case 1, that is, at least two edges of Ni are within

distance M from X.

Fix some e 6= e′ in Ni as above. By the 2M -connectedness of X, we can

connect e to e′ by jumps of distance at most 2M with all intermediate vertices

lying in X. This means that |X| > dist(e, e′)/2M − 1 > ri/2M . Consider the

boundary ∂H∞ of the infinite hole H∞ ∈ H(X). The set X ′ := Zd \H∞ ⊇ X
contains at least ri/2M elements. Also, X ′ is finite because, for example, it

lies in the convex hull of the finite set X1. By the isoperimetric inequality of

Lemma 3.3, we have

p(H∞) = p(X ′) > 2d · |X ′|(d−1)/d > (ri/M)(d−1)/d,

so H∞ is a rich hole.

Case 2.1 Every hole H ∈ H(X) is rich.
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Note that every cube Q ⊆ X2 from the o(X)-centred (M/2)-grid is inside X1 or

touches some (M/2)-cube of X1. Since each grid cube of X1 contains a vertex

from X, we have that Γ0(X) ⊇ B∩X2. When we pass to Γi(X), all vertices of

B∩X2 that are not matched byMi remain. Thus Γi(X) ⊇ (B∩X2) \Mi(A).

Since X ⊆ Ai does not contain any Mi-matched vertex, we also have X ⊆
(A ∩X1) \M−1

i (B). We conclude that

(35) |Γi(X)| − |X| > |B ∩X2| − |A ∩X1| − λ,

where λ := |Mi(A)∩X2| − |M−1
i (B)∩X1|. In view of (34), it suffices to show

that λ 6 p(X1).

Fix any j ∈ [i]. Let Λj consist of those e in Nj = Mj \ Mj−1 that

contribute a positive amount (that is, +1) to λ. For e ∈ Λj let its private set

be

Pj(e) := {e′ ∈ ∂X1 : dist(e, e′) 6 rj/2 +M}.
Let us show that each private set is relatively large:

Claim 5.2.1. For every e ∈ Λj , we have |Pj(e)| > (rj/M)(d−1)/d.

Proof of Claim. Let e = (a, b). Since e contributes +1 to λ, we have that

b ∈ X2 and a 6∈ X1. Let H ∈ H(X) be the hole which contains a. Suppose

that ∂H \ Pj(e) 6= ∅, for otherwise we are done since rj 6 ri and every hole is

rich.

Let us show that, for every integer m with 0 6 m 6 rj/4M , the annulus

Om :=
¶
n ∈ Zd : (2m− 1)M < dist(n, e) 6 (2m+ 1)M

©
contains at least one element of ∂H as a subset. The inner part ∪mt=0Ot of

Om contains elements from both H (namely, a) and X (namely, all elements

of the set dist6M (b) ∩X which is non-empty since b ∈ X2). The same holds

for the outer part ∪∞t=m+1Ot of Om because it entirely contains every edge of

∂H \ Pj(e) 6= ∅. Each of the sets H and X is 2M -connected; thus we can

travel within the set from the inner to the outer part of Om in 2M -jumps.

The distance to e changes by at most 2M at each step, so there must be a

moment when we land in the annulus Om. Thus Om contains elements from

both H and X. It is easy to see that one can travel within Om using only steps

of L1-distance 1 between its any two vertices, in particular, from Om ∩H to

Om ∩X. Since H ∩X = ∅, there is a step from H to its complement, giving

the required element of ∂H inside Om.

Since the annuli are disjoint for different m, this gives at least rj/4M

different elements of ∂H, all belonging to Pj(e). This is at least the desired

bound on |Pj(e)| since rj/M > 4d by (32). The claim is proved. �

Since Nj is (rj + 2M)-sparse by the assumptions of the lemma, we have

that Pj(e)∩Pj(e′) = ∅ for all distinct e, e′ ∈ Λj . Thus Claim 5.2.1 implies that
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|Λj | 6 p(X1)/(rj/M)(d−1)/d. Since j ∈ [i] was arbitrary, we conclude by (32)

that

λ 6
i∑

j=1

|Λj | 6 p(X1)
i∑

j=1

(M/rj)
(d−1)/d 6 p(X1).

Thus we derive from (34) and (35) that |Γi(X)| > |X|, as required.

Case 2.2 We are not in Case 2.1, that is, there is at least one non-rich hole

in H(X).

Take a hole H ∈ H(X) which is not rich. We have H 6= H∞ because, as we

argued at the beginning of Case 2, the infinite hole is necessarily rich.

We claim that at most one edge (a, b) ∈ Ni satisfies a ∈ dist6M (H).

Indeed, if (a, b), (a′, b′) ∈ Ni contradict this, then we can connect a to a′ by

using jumps of distance at most 2M with all intermediate vertices belonging

to the hole H. This gives at least ri/2M vertices in H, contradicting by

Lemma 3.3 our assumption that the hole H is not rich.

If it exists, let e := (a, b) be the unique edge of Ni with a ∈ dist6M (H).

By our assumptions, there is a perfect matching M∞ in F0 such that M∞ ⊇
Mi−1 and, if e exists, then M∞ also contains e. For j ∈ [0, i], define

M′j := {(x,y) ∈Mj : dist(x, H) > M},

and let Γ ′j denote the neighbourhood taken with respect to the graph

F ′j := F
î
A \ (M′j)−1(B), B \M′j(A)

ó
which is obtained from F by removing all vertices matched by M′j . Also,

define

X ′ := X ∪ (A ∩ dist6M (H)).

The following claim will allow us to pass from X to X ′ when proving (33).

Claim 5.2.2. All of the following properties hold.

(1) The sets X and X ′ have the same reference points, that is, o(X ′) =

o(X).

(2) The set X ′1 (which consists of all cubes from the (M/2)-grid centred at

o(X ′) that intersect X ′) equals X1 ∪H.

(3) When we pass to X ′, the hole H disappears; specifically, H(X ′) =

H(X) \ {H}.
(4) The set X ′ is 2M -connected.

(5) We have that |Γi(X)| − |X| > |Γ ′i (X ′)| − |X ′|.

Proof of Claim. Suppose that the first property does not hold, say X ′

contains some n whose j-th coordinate is strictly smaller than min(Prj(X)).

But then n ∈ Zd \X belongs to the infinite hole H∞ as demonstrated by the

infinite path with vertices n − mej for m ∈ N. By the definition of X ′, we
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have dist(n, H) 6 M and thus dist(H,H∞) 6 M , contradicting H 6= H∞.

This proves Part 1.

Let us turn to Part 2. Since X ′ ⊇ X and o(X ′) = o(X), we have that

X ′1 ⊇ X1. Recall that, when we were choosingM, one of the required properties

was that Φ(M/2) < δ(M/2)d. This implies that every (M/2)-cube intersects

the Φ-uniform set A. Thus any (M/2)-cube Q ⊆ H contains at least one

element of A ∩ H ⊆ X ′ \ X, which implies that X ′1 ⊇ H. On the other

hand, every other hole H ′ ∈ H(X) \ {H} is at distance at least M from

X ′ \ X ⊆ dist6M (H), so none of the vertices of H ′ can be claimed when we

build X ′1. This proves Part 2.

Part 3 follows directly from Part 2.

We know that every (M/2)-cube intersects A, so every element of A ∩H
can be connected to X using M -jumps with all intermediate points in A ∩H.

This, the 2M -connectivity of X, and Part 2 imply Part 4.

It remains to verify the last part. Since X ′ ⊇ X and F ′i ⊇ Fi, we have that

Γ ′i (X
′) ⊇ Γi(X). Thus we can equivalently rewrite Part 5 as |X ′ \X| > |W |,

where W := Γ ′i (X
′) \Γi(X). Hence, it suffices to show that the injectionM−1

∞
maps W into X ′ \X. Take any w ∈ W and let v :=M−1

∞ (w) ∈ A. Thus we

aim at showing that v ∈ X ′ \X.

First, suppose that w is not matched by Mi. Since w 6∈ Γi(X), this

implies that w 6∈ Γ0(X), that is, dist(w, X) > M . On the other hand, every

element of X1 is at distance at most M/2 from X. We conclude that w 6∈ X1.

Furthermore, we have w ∈ H: indeed, w ∈ W is within distance M from

X ′ \ X ⊆ dist6M (H) so dist(w, H) 6 2M and w ∈ Zd \ X1 must belong

to H. The M∞-match v of w is at distance at most M from w ∈ H. Thus

dist(v, H) 6 M and, by the definition of X ′, we have v ∈ X ′. Also, v 6∈ X
since dist(w, X) > M . Thus v ∈ X ′ \X, as desired.

So suppose that w is matched by Mi. Let u := M−1
i (w). Since w ∈

Γ ′i (X
′) ⊆ Zd \M′i(A), the edge (u,w) ∈ Mi was not included into M′i. This

means by the definition of M′i that dist(u, H) 6 M and thus u ∈ X ′. Let

us derive a contradiction by assuming that v = M−1
∞ (w) is different from u.

So suppose that u 6= v. Since M∞ ⊇ Mi−1, we have that (u,w) ∈ Ni.
Since dist(u, H) 6 M , we have that (u,w) is the unique special edge (a, b)

of Ni. However, then M∞ 3 (a, b) maps both u 6= v to the same vertex w,

a contradiction. Thus v = u is in X ′; also v = M−1
i (w) cannot belong to

X ⊆ Ai ⊆ Zd \M−1
i (B). Thus v ∈ X ′ \X, as desired.

We conclude thatM−1
∞ gives an injection from W to X ′ \X. This proves

Part 5 of the claim. �

By Part 5 of Claim 5.2.2, it is enough to prove (33) for X ′ with respect

to the smaller matchings M′1 ⊆ ... ⊆ M′i. Note that the assumptions of

the lemma cannot be violated by shrinking the matchings, except if M′i = ∅



MEASURABLE CIRCLE SQUARING 37

in which case M′i ⊆ Mi−1 is trivially extendable. Also, Parts 3 and 4 of

Claim 5.2.2 show that, when we pass from X to X ′, we preserve the 2M -

connectivity and the set of holes does not change except the non-rich hole H

disappears. Thus if we iterate the above operation (that is, keep “filling up”

finite non-rich holes one by one until none remains), then we stop in finitely

many steps and the final set will satisfy all assumptions of either Case 1 or

Case 2.1. Since we gave a direct proof for these cases, this finishes the proof

of Lemma 5.2 (and thus of Part 2 of Theorem 2.2). �

6. Concluding remarks

Laczkovich [21, Page 114] states that “a rough estimate” of the number

of pieces for squaring circle given by the proof in [16, 17] is 1040. Since our

proof of Theorem 1.2 requires stronger analogues of some inequalities from

[16, 17], such as the extra term Ω(|X|(d−1)/d) in Part 1 of Lemma 4.5 under

the further restriction of the neighbourhood to R (whereas the unrestricted

bound |E(X)| > |X| suffices for Theorem 1), it produces at least as many

pieces as the proofs by Laczkovich. As mentioned in [21, Page 114], one needs

at least 3 pieces for circle squaring with arbitrary isometries and at least 4

pieces if one has to use translations only. This seems still to be the current

state of knowledge, so the gap here is really huge.

It is interesting to compare the proofs and results in the current paper

and [10] as both give, for example, a Lebesgue measurable version of Hilbert’s

third problem. In terms of methods, both papers share the same general ap-

proach of reducing the problem to finding a measurable matching in a certain

infinite bipartite graph G = (A,B,E), once we have agreed on the exact set

of isometries to be used. Like here, the paper [10] constructs a sequence of

measurable matchings (Mi)i∈N satisfying (13) and (14), and then defines M
by (12). However, the matching Mi in [10] is obtained from Mi−1 by aug-

menting paths of length at most 2i + 1 in an arbitrary measurable way until

none remains. This works by the observation of Lyons and Nazarov [25, Re-

mark 2.6] that (13) and (14) are satisfied automatically provided G has the

expansion property (i.e. there is ε > 0 such that the measure of the neighbour-

hood of X is at least (1+ε)λ(X) for every set X occupying at most half of one

part in measure). As shown in [10], the expansion property applies to a wide

range of pairs A,B. For example, one of the results in [10] is that two bounded

Lebesgue measurable sets A,B ⊆ Rk for k > 3 are measurably equidecompos-

able if λ(A) = λ(B) and an open ball can be covered by finitely many copies

of each set (without any further assumptions on the boundary or interior of

these sets). On the other hand, G cannot have the expansion property if the

isometries are taken from an amenable group, for example, such as the group of

translations of Rk. Thus we could not prove the Lebesgue part of Theorem 1.2
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by doing augmentations as in [10]; instead, we had to carefully guide eachMi

to look locally as a binary grid of maximum matchings. Also, various examples

by Laczkovich [16, 18, 22] show that the assumptions of Theorems 1.1–2.2 are

rather tight. Hopefully, the ideas that were introduced here will be useful in

establishing further results on measurable equidecompositions, in particular

under actions of amenable groups.

As far as we see, the only place in this paper where we use any set theoretic

assumption stronger than the Axiom of Dependent Choice is the application

of Rado’s theorem [30] inside Theorem 2.1 to derive the existence of a perfect

matching. Thus, if we are allowed to use only the Axiom of Dependent Choice,

our proof of Theorem 1.2 should produce a Borel measurable equidecomposi-

tion A \A′ Tr∼ B \B′ for some Borel meagre nullsets A′ ⊆ A and B′ ⊆ B.

Probably, the most interesting problem which remains open is the question

of Wagon [40, Page 229] whether circle squaring is possible with Borel pieces.

Unfortunately, we do not see a way how to completely eliminate the error

set A′ ∪ B′ (which arises in our arguments after (13)–(14) in Section 4 and

after (30) in Section 5), apart from applying Theorem 2.1 and thus using the

Axiom of Choice.
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34. A. Tarski, O równowazńosći wieloka̧tów (in Polish, with French summary),

Przeglad Matematyczno-Fizyczny 1–2 (1924), 54.

35. , Problème 38, Fund. Math. 7 (1925), 381.
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