Korrespondenz-Seminar der LSGM 2009/10 Klasse 7, Treff 1 am 7. November 2009

Zuerst wurde "Klaus" gespiel: 2 Mannschaften erhalten jeweils 10 Ziffernkarten und müssen Kopfrechenaufgaben lösen. Kommen die Ziffern im Ergebnis vor, so müssen die Schüler mit diesen Ziffern vor gehen.

Teilbarkeit

Das Symbol $a \mid b$, also "a teilt b" wird erläutert. Es hat nur für ganze Zahlen $a,b \in \mathbb{Z}$ einen Sinn. Äquivalent dazu sind die Formulierungen

- $b/a \in \mathbb{Z}$,
- b ist ein ganzzahliges Vielfaches von a
- Es gibt eine ganze Zahl q mit b = qa.
- $\exists q \in \mathbb{Z} : b = qa$.

Die Symbole \exists (es existiert ein) und \forall (für alle) werden eingeführt. Die Zahlenbereichssymbole werden wiederholt: \mathbb{N} , \mathbb{Z} und \mathbb{Q} und \mathbb{Q}_+ . Es gibt auch irrationale Zahlen (nichtperiodische Dezimalbrüche). Auf Pythagoras und Thales wird kurz eingegangen: Es gibt nicht nur rationale, sondern auch irrationale Zahlen, etwa $\sqrt{2}$. Daran ist die griechische Mathematik gescheitert.

Serie1, Aufgabe 3 wird vorgerechnet. *Vor.:* $a \mid b$ und $a \mid c, a, b, c \in \mathbb{N}$.

Beh.: $a \mid (b+c)$.

Beweis. Nach der dritten Formulierung der Teilbarkeit (s.o.) gibt es ganze Zahlen p und q mit b=qa und c=pa. Addiert man beide Gleichungen, so hat man b+c=qa+pa=(q+p)a. Dabei ist p+q erneut eine ganze Zahl. Also gilt $a\mid (b+c)$.

Größter gemeinsamer Teiler und Kleinstes gemeinsames Vielfaches

Wir wiederholen die Begriffe ggT(a,b) und kgV(a,b). Dabei nutzen wir den Weg über die eindeutige *Primfaktorzerlegung* der Zahlen a und b.

Beispiel: Berechne ggT(96,120) und kgV(96,120). Lösung: 24 und 480. Man beachte, dass stets gilt ab = ggT(a,b)kgV(a,b).

Pause: Rasende Roboter.

Winkel und Umformen von Gleichungen

Wir wiederholen drei Winkelsätze am Dreieck

- (1) Innenwinkelsatz.
- (2) Außenwinkelsatz.
- (3) Basiswinkel im gleichschenkligen Dreieck sind gleich groß.

Diese Sätze benutzen wir zur Lösung der folgenden Aufgaben:

Aufgabe 1 Gegeben sei ein gleichschenkliges Dreieck ABC mit den Schenkeln $\overline{AC} = \overline{BC}$. Ferner sei D ein Punkt auf der Strecke \overline{AB} und E ein Punkt auf der Strecke \overline{AC} , sodass gilt: $\angle ACD$ ist so groß wie der Außenwinkel bei C und $\overline{AD} = \overline{AE}$.

- a) Ermittle die Größe des Winkels $\angle AED$, wenn gilt $\angle DCB = 80^{\circ}$.
- b) Ermittle die Größe des Winkels $\angle AED$, wenn gilt $\angle DCB = 40^{\circ}$.
- c) Wie groß muss $\angle DCB$ gewählt werden, damit gilt $\angle DCB = \angle AED$?

Dabei wird der Winkel $\varphi = \angle AED$ ausgedrückt durch den Winkel $\psi = \angle DCB$ allein: $\varphi = 67,5^{\circ} + \psi/8$.

Kongruenzsätze

Alle 4 Kongruenzsätze werden ausführlich wiederholt. Die Serie 1, Aufgabe 1, wird dann gelöst mit Hilfe von SWS; Rückwärtsarbeiten und Vorwärtsarbeiten wird erläutert.

Aufgabe 2 In einem gleichschenkligen Dreieck ABC mit der Basis \overline{AB} mögen sich die Winkelhalbierende des Innenwinkels bei A und die Winkelhalbierende des Außenwinkels bei C in einem Punkt S schneiden

Beweise, dass dann stets $\overline{AC} = \overline{CS}$ gilt.

Hier werden zusätzlich die Umkehrung des Wechselwinkelsatzes und der Wechselwinkelsatz selbst benutzt.